55 research outputs found

    An energy-efficient clustering protocol using fuzzy logic and network segmentation for heterogeneous WSN

    Get PDF
    Wireless sensor networks have become an emerging research area due to their importance in the present industrial application. The enlargement of network lifetime is the major limitation in WSN. Several routing protocols study the extension of lifespan in WSN. Routing protocols significantly influence on the global of energy consumption for sensors in WSN. It is essential to correct the energy efficiency performance of routing protocol in order to improve the lifetime. The protocols based on clustering are the most routing protocols in WSN to reduce energy consumption. The protocols dedicate to WSN have demonstrated their limitation in expanding the lifetime of the network. In this paper, we present Hybrid SEP protocol : Multi-zonal Fuzzy logic heterogeneous Clustering based on Stable Election Protocol (FMZ-SEP). The FMZ-SEP characterizes by four parameters: WSN segmentation (splitting the WSN into the triangle zones ), the Subtractive Clustering Method to determine a correct number of clusters, the FCM and the SEP protocol. The FMZ-SEP prolong the stability period and extend the lifetime. The simulation results point out that the stability period of FMZ-SEP. FMZ-SEP protocol outperforms of MZ-SEP, FSEP and SEP protocol by improving the network lifetime and the stability period

    Hierarchical Routing Protocols in Wireless Sensor Networks: A Survey and its Comparison

    Get PDF
    In Wireless Sensor Networks (WSN), profound research articles are presented to address the hierarchical routing protocols which reduce the energy consumption of sensor nodes and also prolong the life of the network. The state of art of this research article focus on the survey of different hierarchical routing protocols which is utilized to efficiently deliver the sensed data from source to sink node. This article presents a detailed survey on major clustering techniques LEACH, SEP, PEGASIS, and TEEN. Also, this article strongly examines about the advantages and limitations of each hierarchical routing protocol with its recent research issues. Finally, the paper concludes with some of the research issues in hierarchical routing protocols of wireless sensor networks

    Enhancement of Performance Metrics of Heterogeneous Wireless Camera Sensor Network with Functionalization of Extensive Zonal Stable Election Protocol using Threshold Amplification and Residual Energy

    Get PDF
    We report a new improved energy competent and optimized data packet flow protocol with Hierarchical Clustering utilized in Wireless camera Sensor Network.The existing Extensive Zonal Stable Election Protocol has been modified along with the threshold parameters amplification and residual energy. It incorporates dynamic hybrid method with finite number of Member Sensor nodes (MSN) in proximity with the base station share their data directly , while the rest of the farther nodes form a cluster for data transference using Cluster Head. The performance metrics accompanied by heterogeneity, longer network survival and better throughput have been improved. The network field was divided into 4 zones with a gateway for defined region 2, 3, and 4. The criterion for zone division remained on the energy status (residual) of the MSNs and distance from the BS and the formulated field characteristics in the simulation were kept unknown. The obtained results demonstrate that our proposed modified version of EZSE protocol considerably performs better than existing EZ-SEP, Z-SEP, SEP, LEACH, Mod-Leach protocols during entire stability timeframe. The notable achievement is also reported in throughput as the same is enhanced more than  by ~ 39%, 43%, 49% ,56%, 53% while total packets communicated with base station has been increased more than by ~ 127%, 131%, 147%, 151%, 148% stability of the network is also improved more than by ~ 37%, 42%, 45%, 49%, 51% with the corresponding increase in the heterogeneity of networks

    Performance evaluation of hierarchical clustering protocols with fuzzy C-means

    Get PDF
    The longevity of the network and the lack of resources are the main problems within the WSN. Minimizing energy dissipation and optimizing the lifespan of the WSN network are real challenges in the design of WSN routing protocols. Load balanced clustering increases the reliability of the system and enhances coordination between different nodes within the network. WSN is one of the main technologies dedicated to the detection, sensing, and monitoring of physical phenomena of the environment. For illustration, detection, and measurement of vibration, pressure, temperature, and sound. The WSN can be integrated into many domains, like street parking systems, smart roads, and industrial. This paper examines the efficiency of our two proposed clustering algorithms: Fuzzy C-means based hierarchical routing approach for homogeneous WSN (F-LEACH) and fuzzy distributed energy efficient clustering algorithm (F-DEEC) through a detailed comparison of WSN performance parameters such as the instability and stability duration, lifetime of the network, number of cluster heads per round and the number of alive nodes. The fuzzy C-means based on hierarchical routing approach is based on fuzzy C-means and low-energy adaptive clustering hierarchy (LEACH) protocol. The fuzzy distributed energy efficient clustering algorithm is based on fuzzy C-means and design of a distributed energy efficient clustering (DEEC) protocol. The technical capability of each protocol is measured according to the studied parameters

    An Empirical Analysis of cluster-based routing protocols in wireless sensor network

    Get PDF
    Wireless Sensor Networks (WSNs) are utilized for condition monitoring, developing the board, following animals or goods, social protection, transportation, and house frameworks. WSNs are revolutionizing research. A WSN includes a large number of sensor nodes, or bits, in the application. Bits outfitted with the application\u27s sensors acquire nature data and send it to at least one sink center (in like manner called base stations). This article simulates energy-efficient network initialization strategies using simulation models. First, an overview of network initiation and exploration procedures in wireless ad-hoc networks is provided. The clustering-based routing strategy was selected since it\u27s best for ad-hoc sensor networks. The clustering-based routing techniques used for this study are described below. LEACH, SEP, and Z-SEP are used. MATLAB was used to implement and simulate all routing protocols. All protocols were simulated with various parameters like Number of CHs, Number of Alive Nodes, Number of Dead Nodes, Number of packets to BS, and circumstances to show their functioning and to determine their behavior in different sensor networks

    Energy Efficient Protocol for Lifetime Prediction of Wireless Sensor Network using Multivariate Polynomial Regression Model

    Get PDF
    The sensor network performs gathering, monitoring, and tracking of objects in the given area. The sensor nodes are normally distributed randomly in the network area for collecting the information. The major issues in Wireless Sensor Networks (WSN) are coverage, energy, and limited resources. Sensor Nodes’ (SN) performance depends on so many parameters but normally depends on Residual Energy (RE) and Distance from the base station. The Cluster Head (CH) cooperatively communicates with Base Station (BS) via routing protocols. The proposed Energy Efficient Multilevel Region Based (EEMRB) protocol performs the task by partitioning the entire network area into multiple levels and sub-levels. The sub-levels are partitioned to perform clusters to communicate the sensor via CH (s) using single/multi-hop communication to BS. The proposed protocol is compared with the Stable Election Protocol and shows improvement in network lifetime. Based on the proposed protocol data set, a Multivariate Polynomial Regression (MPR) Model is proposed to predict network lifetime. The model uses packet size and node density as network design parameters. The simulation results show that the size of the packet and network area play a major role in network lifetime. Therefore, the lifetime of the predicted model and EEMRB protocol are close to each other. This prediction model is suitable for the prediction of any network area's lifetime

    Performance Evaluation of a Zone-based Three-level Heterogeneous Clustering Protocol for WSNs, Journal of Telecommunications and Information Technology, 2023, nr 3

    Get PDF
    This paper proposes a zone-based three-level heterogeneous clustering protocol (ZB-TLHCP) for heterogeneous WSNs. In ZB-TLHCP, the sensor field/region is divided into zones where super, advance, and normal nodes are deployed uniformly and randomly. The performance of the proposed ZB-TLHCP system is compared with that of zonal-stable election protocol (Z-SEP), distributed energy efficient clustering (DEEC), and threshold-based DEEC (TDEEC) protocol by varying the number of super and advance nodes, their energy levels for the fixed sensor field, and the total number of nodes. Matlab simulation results revealed that the proposed ZB-TLHCP solution performed better than Z-SEP, DEEC, and TDEEC protocols, as it increased the instability period, prolonged the network's lifetime, and achieved higher throughput value

    Energy-Efficient Routing Control Algorithm in Large-Scale WSN for Water Environment Monitoring with Application to Three Gorges Reservoir Area

    Get PDF
    Published version of an article in the journal: The Scientific World Journal. Also available from the publisher at: http://dx.doi.org/10.1155/2014/802915 Open AccessThe typical application backgrounds of large-scale WSN (wireless sensor networks) for the water environment monitoring in the Three Gorges Reservoir are large coverage area and wide distribution. To maximally prolong lifetime of large-scale WSN, a new energy-saving routing algorithm has been proposed, using the method of maximum energy-welfare optimization clustering. Firstly, temporary clusters are formed based on two main parameters, the remaining energy of nodes and the distance between a node and the base station. Secondly, the algorithm adjusts cluster heads and optimizes the clustering according to the maximum energy-welfare of the cluster by the cluster head shifting mechanism. Finally, in order to save node energy efficiently, cluster heads transmit data to the base station in single-hop and multihop way. Theoretical analysis and simulation results show that the proposed algorithm is feasible and advanced. It can efficiently save the node energy, balance the energy dissipation of all nodes, and prolong the network lifetime

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio

    An event-aware cluster-head rotation algorithm for extending lifetime of wireless sensor Network with smart nodes

    Get PDF
    Smart sensor nodes can process data collected from sensors, make decisions, and recognize relevant events based on the sensed information before sharing it with other nodes. In wireless sensor networks, the smart sensor nodes are usually grouped in clusters for effective cooperation. One sensor node in each cluster must act as a cluster head. The cluster head depletes its energy resources faster than the other nodes. Thus, the cluster-head role must be periodically reassigned (rotated) to different sensor nodes to achieve a long lifetime of wireless sensor network. This paper introduces a method for extending the lifetime of the wireless sensor networks with smart nodes. The proposed method combines a new algorithm for rotating the cluster-head role among sensor nodes with suppression of unnecessary data transmissions. It enables effective control of the cluster-head rotation based on expected energy consumption of sensor nodes. The energy consumption is estimated using a lightweight model, which takes into account transmission probabilities. This method was implemented in a prototype of wireless sensor network. During experimental evaluation of the new method, detailed measurements of lifetime and energy consumption were conducted for a real wireless sensor network. Results of these realistic experiments have revealed that the lifetime of the sensor network is extended when using the proposed method in comparison with state-of-the-art cluster-head rotation algorithms
    corecore