36,396 research outputs found

    A receding horizon event-driven control strategy for intelligent traffic management

    Get PDF
    AbstractIn this paper, the intelligent traffic management within a smart city environment is addressed by developing an ad-hoc model predictive control strategy based on an event-driven formulation. To this end, a constrained hybrid system description is considered for safety verification purposes and a low-demanding receding horizon controller is then derived by exploiting set-theoretic arguments. Simulations are performed on the train-gate benchmark system to show the effectiveness and benefits of the proposed methodology

    Anytime system level verification via parallel random exhaustive hardware in the loop simulation

    Get PDF
    System level verification of cyber-physical systems has the goal of verifying that the whole (i.e., software + hardware) system meets the given specifications. Model checkers for hybrid systems cannot handle system level verification of actual systems. Thus, Hardware In the Loop Simulation (HILS) is currently the main workhorse for system level verification. By using model checking driven exhaustive HILS, System Level Formal Verification (SLFV) can be effectively carried out for actual systems. We present a parallel random exhaustive HILS based model checker for hybrid systems that, by simulating all operational scenarios exactly once in a uniform random order, is able to provide, at any time during the verification process, an upper bound to the probability that the System Under Verification exhibits an error in a yet-to-be-simulated scenario (Omission Probability). We show effectiveness of the proposed approach by presenting experimental results on SLFV of the Inverted Pendulum on a Cart and the Fuel Control System examples in the Simulink distribution. To the best of our knowledge, no previously published model checker can exhaustively verify hybrid systems of such a size and provide at any time an upper bound to the Omission Probability

    Non-null Infinitesimal Micro-steps: a Metric Temporal Logic Approach

    Full text link
    Many systems include components interacting with each other that evolve with possibly very different speeds. To deal with this situation many formal models adopt the abstraction of "zero-time transitions", which do not consume time. These however have several drawbacks in terms of naturalness and logic consistency, as a system is modeled to be in different states at the same time. We propose a novel approach that exploits concepts from non-standard analysis to introduce a notion of micro- and macro-steps in an extension of the TRIO metric temporal logic, called X-TRIO. We use X-TRIO to provide a formal semantics and an automated verification technique to Stateflow-like notations used in the design of flexible manufacturing systems.Comment: 20 pages, 2 figures, submitted to the conference "FORMATS: Formal Modelling and Analysis of Timed Systems" 201

    Supremica – An integrated environment for verification, synthesis and simulation of discrete event systems

    Get PDF
    An integrated environment, Supremica, for verification, synthesis and simulation of discrete event systems is presented. The basic model in Supremica is finite automata where the transitions have an associated event together with a guard condition and an action function that updates automata variables. Supremica uses two main approaches to handle large state-spaces. The first approach exploits modularity in order to divide the original problem into many smaller problems that together solve the original problem. The second approach uses an efficient data structure, a binary decision diagram, to symbolically represent the reachable states. Models in Supremica may be simulated in the environment. It is also possible to generate code that implements the behavior of the model using both the IEC 61131 and the IEC 61499 standard

    On minimising the maximum expected verification time

    Get PDF
    Cyber Physical Systems (CPSs) consist of hardware and software components. To verify that the whole (i.e., software + hardware) system meets the given specifications, exhaustive simulation-based approaches (Hardware In the Loop Simulation, HILS) can be effectively used by first generating all relevant simulation scenarios (i.e., sequences of disturbances) and then actually simulating all of them (verification phase). When considering the whole verification activity, we see that the above mentioned verification phase is repeated until no error is found. Accordingly, in order to minimise the time taken by the whole verification activity, in each verification phase we should, ideally, start by simulating scenarios witnessing errors (counterexamples). Of course, to know beforehand the set of such scenarios is not feasible. In this paper we show how to select scenarios so as to minimise the Worst Case Expected Verification Tim
    corecore