3,778 research outputs found

    A recent electronic control circuit to a throttle device

    Get PDF
    The main objective of this paper is to conceive a recent electronic control circuit to the throttle device. The throttle mechanical actuator is the most important part in an automotive gasoline engine. Among the different control strategies recently reported, an easy to implement control scheme is an open research topic in the analog electronic engineering field. Hence, by using the nonlinear dwell switching control theory, an analog electronic control unit is proposed to manipulate an automotive throttle plate. Due to the switching mechanism is commuting between a stable and an unstable controllers, the resultant closed-loop system is enough robust to the control objective This fact is experimentally evidenced. The proposed electronic controller uses operational amplifiers along with an Arduino unit. This unit is just employed to generate the related switching signal that can be replaced by using, for instance, the timer IC555. Thus, this study is a contribution on design and realization of an electronic control circuit to the throttle device.Peer ReviewedPostprint (published version

    Adaptive-smith predictor for controlling an automotive electronic throttle over network

    Get PDF
    The paper presents a control strategy for an automotive electronic throttle, a device used to regulate the power produced by spark-ignition engines. Controlling the electronic throttle body is a difficult task because the throttle accounts strong nonlinearities. The difficulty increases when the control works through communication networks subject to random delay. In this paper, we revisit the Smith-predictor control, and show how to adapt it for controlling the electronic throttle body over a delay-driven network. Experiments were carried out in a laboratory, and the corresponding data indicate the benefits of our approach for applications.Peer ReviewedPostprint (published version

    Automotive Powertrain Control — A Survey

    Full text link
    This paper surveys recent and historical publications on automotive powertrain control. Control-oriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72023/1/j.1934-6093.2006.tb00275.x.pd

    Modelling and Control of Electromechanical Servo System with High Nonlinearity

    Get PDF

    Research on calibration method of electronic control parameters based on engine model

    Get PDF
    The MBC (calibration model-based) toolbox in MATLAB software and Ricardo Wave were used to optimize the power performance of a gasoline engine. In the calibration process, Firstly, the wave simulation model of the engine was established and validated; then, engine operating points were determined by using the design of experiments (DOE) method, and parameters and performance (torque, fuel consumption, power and the cylinder maximum pressure, etc.) of the engine at these operating points were calculated by the simulation model. Finally, the engine mathematical statistical model was established and calibration optimization. The engine ignition advance angle, air-fuel ratio and the torque of the engine were obtained. The results show that the method combined with the modern DoE test design theory and automatic calibration technology not only makes the engine torque from 198 Nm to 215 Nm, but also greatly reduces the test time and improve the calibration efficienc

    A novel genetic programming approach to the design of engine control systems for the voltage stabilisation of hybrid electric vehicle generator outputs

    No full text
    This paper describes a Genetic Programming based automatic design methodology applied to the maintenance of a stable generated electrical output from a series-hybrid vehi- cle generator set. The generator set comprises a 3-phase AC generator whose output is subsequently rectified to DC.The engine/generator combination receives its control input via an electronically actuated throttle, whose control integration is made more complex due to the significant system time delay. This time delay problem is usually addressed by model predictive design methods, which add computational complexity and rely as a necessity on accurate system and delay models. In order to eliminate this reliance, and achieve stable operation with disturbance rejection, a controller is designed via a Genetic Programming framework implemented directly in Matlab, and particularly, Simulink. the principal objective is to obtain a relatively simple controller for the time-delay system which doesn’t rely on computationally expensive structures, yet retains inherent disturabance rejection properties. A methodology is presented to automatically design control systems directly upon the block libraries available in Simulink to automatically evolve robust control structures

    Saving Hydrogen Fuel Consumption and Operating at High Efficiency of Fuel Cell in Hybrid System to Power UAV

    Get PDF
    The present fuel cell technology is under considerations as a potential power source for Unmanned Aerial Vehicles. Fuel cells are an electrochemical power plant that takes hydrogen and oxygen as inputs and produces electricity, water and heat as outputs.  Most of the global hydrogen production is from non-renewable fossil fuels. Therefore, this paper investigates how to save hydrogen fuel consumption and operate at high efficiency in the fuel cell/battery hybrid system to power a small Aircraft. We achieved that by working on the power management of the fuel cell/battery hybrid propulsion system for small UAV by using the fuzzy logic controller and charging up the batteries. The hybrid propulsion system consists of a 1.2kW PEM fuel cell, three 12V batteries, DC/DC converters, and an electric engine. The fuzzy logic controls the batteries' output powers through the bidirectional DC/DC converter. It will help maintain the fuel cell operates at an optimal point with high efficiency as the main power supply for different flight phases to achieve the desired power

    THE ABILITY OF THE CONTINUOUSLY VARIABLE TRANSMISSION TO CONTROL THE ENGINE AT MAXIMUM POWER: LITERATURE REVIEW

    Get PDF
    Good ride performance is one of the most important key attributes of a passenger vehicle. One of the methods to achieve this is by using Continuously Variable Transmission (CVT). This is because a CVT can provide an almost infinite ratio within its limits smoothly and continuously. The flexibility of a CVT allows the driving shaft to maintain a constant angular velocity over a range of output velocities. New developments in gear reduction and manufacturing have led to ever more robust CVTs, allowing them to be applied in more diverse automotive applications. As CVT development continues, costs will be reduced further, and the performance will continue to improve, making further development and application of the CVT technology desirable. This cycle of improvement will offer CVT a solid foundation in the world's automotive infrastructure. This paper aims to provide some background and relevant information that is necessary for this study. Specifically, a brief description of CVT, advantages and their brief history is presented. This paper also evaluates the current state of CVT, investigate the technology frontline of drivetrain control and the development of CVT. The stepless transmission is able to maintain the engine running at its maximum power

    THROTTLE-BY-WIRE (TBW) FOR RETROFIT CONVERSION OF HYBRID ELECTRIC VEHICLE (HEV) USING NI COMPACT RIO & LABVIEW

    Get PDF
    Conventional throttle body in a vehicle is controlled mechanically via cable and this project propose a method for replacing the conventional throttle body with an electronic throttle body (ETB) and fine-tune the system in order to implement electronic throttle-by-wire (TBW) for retrofit conversion of hybrid electric vehicle (HEV) to enable diligent control of throttle valve by using National Instrument’s compact Reconfigurable Input Output (cRIO) hardware and Laboratory Instrumentation Engineering Workbench (LabVIEW) graphical user interface (GUI)
    • …
    corecore