1,836 research outputs found
Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges
With the rapid development of marine activities, there has been an increasing
number of maritime mobile terminals, as well as a growing demand for high-speed
and ultra-reliable maritime communications to keep them connected.
Traditionally, the maritime Internet of Things (IoT) is enabled by maritime
satellites. However, satellites are seriously restricted by their high latency
and relatively low data rate. As an alternative, shore & island-based base
stations (BSs) can be built to extend the coverage of terrestrial networks
using fourth-generation (4G), fifth-generation (5G), and beyond 5G services.
Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs.
Despite of all these approaches, there are still open issues for an efficient
maritime communication network (MCN). For example, due to the complicated
electromagnetic propagation environment, the limited geometrically available BS
sites, and rigorous service demands from mission-critical applications,
conventional communication and networking theories and methods should be
tailored for maritime scenarios. Towards this end, we provide a survey on the
demand for maritime communications, the state-of-the-art MCNs, and key
technologies for enhancing transmission efficiency, extending network coverage,
and provisioning maritime-specific services. Future challenges in developing an
environment-aware, service-driven, and integrated satellite-air-ground MCN to
be smart enough to utilize external auxiliary information, e.g., sea state and
atmosphere conditions, are also discussed
Feasibility, Architecture and Cost Considerations of Using TVWS for Rural Internet Access in 5G
The cellular technology is mostly an urban technology that has been unable to serve rural areas well. This is because the traditional cellular models are not economical for areas with low user density and lesser revenues. In 5G cellular networks, the coverage dilemma is likely to remain the same, thus widening the rural-urban digital divide further. It is about time to identify the root cause that has hindered the rural technology growth and analyse the possible options in 5G architecture to address this issue. We advocate that it can only be accomplished in two phases by sequentially addressing economic viability followed by performance progression. We deliberate how various works in literature focus on the later stage of this ‘two-phase’ problem and are not feasible to implement in the first place. We propose the concept of TV band white space (TVWS) dovetailed with 5G infrastructure for rural coverage and show that it can yield cost-effectiveness from a service provider’s perspective
A Holistic Investigation on Terahertz Propagation and Channel Modeling Toward Vertical Heterogeneous Networks
User-centric and low latency communications can be enabled not only by small
cells but also through ubiquitous connectivity. Recently, the vertical
heterogeneous network (V-HetNet) architecture is proposed to backhaul/fronthaul
a large number of small cells. Like an orchestra, the V-HetNet is a polyphony
of different communication ensembles, including geostationary orbit (GEO), and
low-earth orbit (LEO) satellites (e.g., CubeSats), and networked flying
platforms (NFPs) along with terrestrial communication links. In this study, we
propose the Terahertz (THz) communications to enable the elements of V-HetNets
to function in harmony. As THz links offer a large bandwidth, leading to
ultra-high data rates, it is suitable for backhauling and fronthauling small
cells. Furthermore, THz communications can support numerous applications from
inter-satellite links to in-vivo nanonetworks. However, to savor this harmony,
we need accurate channel models. In this paper, the insights obtained through
our measurement campaigns are highlighted, to reveal the true potential of THz
communications in V-HetNets.Comment: It has been accepted for the publication in IEEE Communications
Magazin
- …
