49,548 research outputs found

    A Hybrid Approach to the Optimization of Multiechelon Systems

    Get PDF
    In freight transportation there are two main distribution strategies: direct shipping and multiechelon distribution. In the direct shipping, vehicles, starting from a depot, bring their freight directly to the destination, while in the multiechelon systems, freight is delivered from the depot to the customers through an intermediate points. Multiechelon systems are particularly useful for logistic issues in a competitive environment. The paper presents a concept and application of a hybrid approach to modeling and optimization of the Multi-Echelon Capacitated Vehicle Routing Problem. Two ways of mathematical programming (MP) and constraint logic programming (CLP) are integrated in one environment. The strengths of MP and CLP in which constraints are treated in a different way and different methods are implemented and combined to use the strengths of both. The proposed approach is particularly important for the discrete decision models with an objective function and many discrete decision variables added up in multiple constraints. An implementation of hybrid approach in the ECLiPSe system using Eplex library is presented. The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) and its variants are shown as an illustrative example of the hybrid approach. The presented hybrid approach will be compared with classical mathematical programming on the same benchmark data sets

    Translation-based Constraint Answer Set Solving

    Full text link
    We solve constraint satisfaction problems through translation to answer set programming (ASP). Our reformulations have the property that unit-propagation in the ASP solver achieves well defined local consistency properties like arc, bound and range consistency. Experiments demonstrate the computational value of this approach.Comment: Self-archived version for IJCAI'11 Best Paper Track submissio

    CASP Solutions for Planning in Hybrid Domains

    Full text link
    CASP is an extension of ASP that allows for numerical constraints to be added in the rules. PDDL+ is an extension of the PDDL standard language of automated planning for modeling mixed discrete-continuous dynamics. In this paper, we present CASP solutions for dealing with PDDL+ problems, i.e., encoding from PDDL+ to CASP, and extensions to the algorithm of the EZCSP CASP solver in order to solve CASP programs arising from PDDL+ domains. An experimental analysis, performed on well-known linear and non-linear variants of PDDL+ domains, involving various configurations of the EZCSP solver, other CASP solvers, and PDDL+ planners, shows the viability of our solution.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    A Simulation Tool for tccp Programs

    Get PDF
    The Timed Concurrent Constraint Language tccp is a declarative synchronous concurrent language, particularly suitable for modelling reactive systems. In tccp, agents communicate and synchronise through a global constraint store. It supports a notion of discrete time that allows all non-blocked agents to proceed with their execution simultaneously. In this paper, we present a modular architecture for the simulation of tccp programs. The tool comprises three main components. First, a set of basic abstract instructions able to model the tccp agent behaviour, the memory model needed to manage the active agents and the state of the store during the execution. Second, the agent interpreter that executes the instructions of the current agent iteratively and calculates the new agents to be executed at the next time instant. Finally, the constraint solver components which are the modules that deal with constraints. In this paper, we describe the implementation of these components and present an example of a real system modelled in tccp.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    (Co-)Inductive semantics for Constraint Handling Rules

    Full text link
    In this paper, we address the problem of defining a fixpoint semantics for Constraint Handling Rules (CHR) that captures the behavior of both simplification and propagation rules in a sound and complete way with respect to their declarative semantics. Firstly, we show that the logical reading of states with respect to a set of simplification rules can be characterized by a least fixpoint over the transition system generated by the abstract operational semantics of CHR. Similarly, we demonstrate that the logical reading of states with respect to a set of propagation rules can be characterized by a greatest fixpoint. Then, in order to take advantage of both types of rules without losing fixpoint characterization, we present an operational semantics with persistent. We finally establish that this semantics can be characterized by two nested fixpoints, and we show the resulting language is an elegant framework to program using coinductive reasoning.Comment: 17 page

    Hybrid Rules with Well-Founded Semantics

    Get PDF
    A general framework is proposed for integration of rules and external first order theories. It is based on the well-founded semantics of normal logic programs and inspired by ideas of Constraint Logic Programming (CLP) and constructive negation for logic programs. Hybrid rules are normal clauses extended with constraints in the bodies; constraints are certain formulae in the language of the external theory. A hybrid program is a pair of a set of hybrid rules and an external theory. Instances of the framework are obtained by specifying the class of external theories, and the class of constraints. An example instance is integration of (non-disjunctive) Datalog with ontologies formalized as description logics. The paper defines a declarative semantics of hybrid programs and a goal-driven formal operational semantics. The latter can be seen as a generalization of SLS-resolution. It provides a basis for hybrid implementations combining Prolog with constraint solvers. Soundness of the operational semantics is proven. Sufficient conditions for decidability of the declarative semantics, and for completeness of the operational semantics are given
    • …
    corecore