605,603 research outputs found

    A Rewriting-Logic-Based Technique for Modeling Thermal Systems

    Full text link
    This paper presents a rewriting-logic-based modeling and analysis technique for physical systems, with focus on thermal systems. The contributions of this paper can be summarized as follows: (i) providing a framework for modeling and executing physical systems, where both the physical components and their physical interactions are treated as first-class citizens; (ii) showing how heat transfer problems in thermal systems can be modeled in Real-Time Maude; (iii) giving the implementation in Real-Time Maude of a basic numerical technique for executing continuous behaviors in object-oriented hybrid systems; and (iv) illustrating these techniques with a set of incremental case studies using realistic physical parameters, with examples of simulation and model checking analyses.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Method for locating low-energy solutions within DFT+U

    Get PDF
    The widely employed DFT+U formalism is known to give rise to many self-consistent yet energetically distinct solutions in correlated systems, which can be highly problematic for reliably predicting the thermodynamic and physical properties of such materials. Here we study this phenomenon in the bulk materials UO_2, CoO, and NiO, and in a CeO_2 surface. We show that the following factors affect which self-consistent solution a DFT+U calculation reaches: (i) the magnitude of U; (ii) initial correlated orbital occupations; (iii) lattice geometry; (iv) whether lattice symmetry is enforced on the charge density; and (v) even electronic mixing parameters. These various solutions may differ in total energy by hundreds of meV per atom, so identifying or approximating the ground state is critical in the DFT+U scheme. We propose an efficient U-ramping method for locating low-energy solutions, which we validate in a range of test cases. We also suggest that this method may be applicable to hybrid functional calculations

    A GGA plus U approach to effective electronic correlations in thiolate-ligated iron-oxo (IV) porphyrin

    Get PDF
    High-valent oxo-metal complexes exhibit correlated electronic behavior on dense, low-lying electronic state manifolds, presenting challenging systems for electronic structure methods. Among these species, the iron-oxo (IV) porphyrin denoted Compound I occupies a privileged position, serving a broad spectrum of catalytic roles. The most reactive members of this family bear a thiolate axial ligand, exhibiting high activity toward molecular oxygen activation and substrate oxidation. The default approach to such systems has entailed the use of hybrid density functionals or multi-configurational/multireference methods to treat electronic correlation. An alternative approach is presented based on the GGA+U approximation to density functional theory, in which a generalized gradient approximation (GGA) functional is supplemented with a localization correction to treat on-site correlation as inspired by the Hubbard model. The electronic structure of thiolate-ligated iron-oxo (IV) porphyrin and corresponding Coulomb repulsion U are determined both empirically and self-consistently, yielding spin-distributions, state level splittings, and electronic densities of states consistent with prior hybrid functional calculations. Comparison of this detailed electronic structure with model Hamiltonian calculations suggests that the localized 3d iron moments induce correlation in the surrounding electron gas, strengthening local moment formation. This behavior is analogous to strongly correlated electronic systems such as Mott insulators, in which the GGA+U scheme serves as an effective single-particle representation for the full, correlated many-body problem

    Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof

    Get PDF
    "Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire

    A MILP algorithm for the optimal sizing of an off-grid hybrid renewable energy system in South Tyrol

    Get PDF
    The exploitation of renewable energy sources through sustainable energy technologies are taking the field to decrease the pollutions' emissions into the Earth's environment. To offset the limitations of such resources, hybrid energy systems are becoming fundamental in grid-connected applications as well as in off-grid ones. However, the unsteady behavior of renewable sources, such as Sun and Wind, complicates the prediction of the energy production's trend. The main factors and components involved in the design of hybrid energy systems are: (i) type of generators, (ii) their optimal number, (iii) storage systems and (iv) optimal management strategies. All of them have to be considered simultaneously to develop the optimal solution aimed at either reducing the dependence from fossil fuels or granting the supply of energy. In this paper, a methodology based on the Mixed Integer Linear Programming (MILP) is presented and adopted to meet the electric demand of a mountain lodge located in a remote area in South-Tyrol (Italy). The methodology has been developed implementing an algorithm through the Matlab ©software. The algorithm is capable of evaluating the optimal size of a hybrid off-grid Solar–Wind system with battery storage in order to replace an Internal Combustion Engine (ICE) fueled by diesel. Keywords: Hybrid off-grid energy system, Mixed integer linear programming, Matlab©, Optimization algorithm, Renewable energ

    Synthesis of Hybrid (III-V)y(IV)5-2y Semiconductors: A New Approach to Extending the Optoelectronic Capabilities of Si and Ge Technologies

    Get PDF
    abstract: Modern semiconductor technologies have been dominated by group-IV materials and III-V analogues. The development of hybrid derivatives combining appropriate members of these systems has been of interest for the purpose of extending the optoelectronic capabilities of the state-of-the-art. Early work on pseudo-binary (III-V)-IV alloys, described with the general formula (III-V)1-x(IV2)x, showed limited progress due to phase segregation, auto-doping and compositional inhomogeneities. Recently, new techniques were introduced for synthesizing new classes of (III-V)-IV hybrid materials using reactions of V(IVH3)3 molecules [V = N, P, As and IV = Si, Ge] with group-III elements (B, Al, Ga, In). The reactions produce (III-V)-IV3 building blocks that interlink to form diamond-like frameworks in which the III-V pairs incorporate as isolated units within the group-IV lattice. This approach not only precludes phase segregation, but also provides access to structures and compositions unattainable by conventional means. Entire new families of crystalline (III-V)-IV3 and (III-V)y(IV)5-y alloys with tunable IV-rich compositions, different from conventional (III-V)1-x(IV2)x systems, have been grown on Si(100) and GaP(100) wafers as well as Si1-xGex and Ge buffer layers which, in most cases, provide lattice matched templates for Si integration. In this work, materials in the In-P-Ge, Ga-As-Ge and Ga-P-Si systems that would exhibit direct-gap behavior were targeted. A series of (InP)yGe5-2y alloys with tunable Ge contents above 60% were synthesized by reactions of P(GeH3)3 and indium atoms and were studied for bonding, structure, and optical response. (GaAs)yGe5-2y analogues were also grown and exhibited strong photoluminescence for applications in mid-IR photonics. The GaPSi3 alloy and Si-rich derivatives were produced via reactions of P(SiH3)3 and [H2GaNMe2]2 and exhibit enhanced absorption in the visible range. Quaternary analogues in the Al1-xBxPSi3 system were grown on Si via reactions of Al(BH4)3 and P(SiH3)3 leading to the formation crystalline materials with extended absorption relative to Si. This makes them imminently suitable for applications in Si-based photovoltaics. The work emphasized use of quantum-chemical simulations to elucidate structural, thermodynamic, and mechanical properties of the synthesized systems. The theory also included simulations of new synthetic targets such as BNC3, BNSi3, BPC3, and BPSi3 with interesting mechanical properties and strong covalent bonding.Dissertation/ThesisDoctoral Dissertation Chemistry 201
    corecore