1,269 research outputs found

    Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling

    Get PDF

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    Optimization for Integration of Plug-in Hybrid Electric Vehicles into Distribution Grid

    Get PDF
    Plug-in hybrid electric vehicles (PHEVs) feature combined electric and gasoline powertrains with internal combustion engine and electric motors powered by battery packs. The battery packs of PHEVs are mostly charged during off-peaks hours at lower prices and meanwhile absorb the excess power from the grid. Similarly, the power stored in the batteries can also flow back to the electric grid in response to ease the peak load demands. With the increasing penetration and integration of PHEVs, the reliability of PHEVs is essential to overall power system reliability since the charging mechanisms of PHEVs can influence the reliability of power system. Furthermore, due to the direct integration of PHEVs into the residential distribution network, the PHEVs can work as backup batteries for power systems in case of power outage. Therefore, the reliability analysis of power systems and the ancillary services provided by PHEVs are also proposed in this thesis study. For the driving pattern of each PHEV, there are three basic elements modeled, which are the departure time, the arrival time and the daily mileage, all represented by probability density functions. Based on these basic concepts, the methodology for modeling the load demand of PHEVs is introduced. In the proposed system, both the Differential Evolution and the Particle Swarm Optimization are proposed to optimize the control strategies for power systems with integration of PHEVs. Aside from using the minimum cost as a figure of merit when designing and determining the best PHEV charging mechanism, the reliability improvement brought to the power systems by PHEVs and the extra earnings obtained by performing frequency regulation services are also quantified and taken into account. Although the reliability of power systems with PHEV penetrations has been well-studied, the adoption of the Differential Evolution algorithm for minimizing the cost of overall system is not exercised, not to mention a thorough comparative study with other common optimization algorithms. To sum up, the Differential Evolution can not only achieve multiple goals by improving the power quality, reducing the peak load, providing regulation services and minimizing the total virtual cost in this system, it can also offer better results compared with the Particle Swarm Optimization in terms of minimizing the cost

    A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles

    Get PDF
    Conventional unit commitment is a mixed integer optimization problem and has long been a key issue for power system operators. The complexity of this problem has increased in recent years given the emergence of new participants such as large penetration of plug-in electric vehicles. In this paper, a new model is established for simultaneously considering the day-ahead hourly based power system scheduling and a significant number of plug-in electric vehicles charging and discharging behaviours. For solving the problem, a novel hybrid mixed coding meta-heuristic algorithm is proposed, where V-shape symmetric transfer functions based binary particle swarm optimization are employed. The impact of transfer functions utilised in binary optimization on solving unit commitment and plug-in electric vehicle integration are investigated in a 10 unit power system with 50,000 plug-in electric vehicles. In addition, two unidirectional modes including grid to vehicle and vehicle to grid, as well as a bi-directional mode combining plug-in electric vehicle charging and discharging are comparatively examined. The numerical results show that the novel symmetric transfer function based optimization algorithm demonstrates competitive performance in reducing the fossil fuel cost and increasing the scheduling flexibility of plug-in electric vehicles in three intelligent scheduling modes

    Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids

    Get PDF
    Electric vehicle fleets and smart grids are two growing technologies. These technologies provided new possibilities to reduce pollution and increase energy efficiency. In this sense, electric vehicles are used as mobile loads in the power grid. A distributed charging prioritization methodology is proposed in this paper. The solution is based on the concept of virtual power plants and the usage of evolutionary computation algorithms. Additionally, the comparison of several evolutionary algorithms, genetic algorithm, genetic algorithm with evolution control, particle swarm optimization, and hybrid solution are shown in order to evaluate the proposed architecture. The proposed solution is presented to prevent the overload of the power grid

    Towards Wind Energy-based Charging Stations: A Review of Optimization Methods

    Get PDF
    Due to the growing importance of renewable sources in sustainable energy systems, the strategic deployment of robust optimization techniques plays a crucial role in the design of Electric Vehicle Charging Stations (EVCSs). These stations need to smoothly incorporate renewable sources, ensuring optimal energy utilization. This study provides a comprehensive overview of the methodologies and approaches employed in the enhancement of wind energy based EVCSs. The aim is to discern the most efficacious techniques for optimizing charging stations. Researchers engage diverse strategies and methodologies in the realm of sizing and optimization, encompassing a spectrum of algorithmic implementations and software solutions. Evidently, each algorithm or software application bears distinctive merits and demerits. Singular reliance on a solitary algorithm or software for charging utility optimization is discerned to be potentially limiting. The investigation reveals that achieving better results in Electric Vehicle Charging Station (EVCS) optimization is facilitated by the collaborative use of multiple algorithms like GA, PSO, and ACO, among others, or software tools like Homer or RETScreen

    Detection of Lying Electrical Vehicles in Charging Coordination Application Using Deep Learning

    Full text link
    The simultaneous charging of many electric vehicles (EVs) stresses the distribution system and may cause grid instability in severe cases. The best way to avoid this problem is by charging coordination. The idea is that the EVs should report data (such as state-of-charge (SoC) of the battery) to run a mechanism to prioritize the charging requests and select the EVs that should charge during this time slot and defer other requests to future time slots. However, EVs may lie and send false data to receive high charging priority illegally. In this paper, we first study this attack to evaluate the gains of the lying EVs and how their behavior impacts the honest EVs and the performance of charging coordination mechanism. Our evaluations indicate that lying EVs have a greater chance to get charged comparing to honest EVs and they degrade the performance of the charging coordination mechanism. Then, an anomaly based detector that is using deep neural networks (DNN) is devised to identify the lying EVs. To do that, we first create an honest dataset for charging coordination application using real driving traces and information revealed by EV manufacturers, and then we also propose a number of attacks to create malicious data. We trained and evaluated two models, which are the multi-layer perceptron (MLP) and the gated recurrent unit (GRU) using this dataset and the GRU detector gives better results. Our evaluations indicate that our detector can detect lying EVs with high accuracy and low false positive rate

    EV fleet charging load forecasting based on multiple decomposition with CEEMDAN and swarm decomposition.

    Get PDF
    As the transition to electric mobility is accelerating, EV fleet charging loads are expected to become increasingly significant for power systems. Hence, EV fleet load forecasting is vital to maintaining the reliability and safe operation of the power system. This paper presents a new multiple decomposition based hybrid forecasting model for EV fleet charging. The proposed approach incorporates the Swarm Decomposition (SWD) into the Complete Ensemble Empirical Mode Decomposition Adaptive Noise (CEEMDAN) method. The multiple decomposition approach offers more stable, stationary, and regular features of the original signals. Each decomposed signal is fed into artificial intelligence-based forecasting models including multi-layer perceptron (MLP), long short-term memory (LSTM) and bidirectional LSTM (Bi-LSTM). Real EV fleet charging data sets from the field are used to validate the performance of the models. Various statistical metrics are used to quantify the prediction performance of the proposed model through a comparative analysis of the implemented models. It is demonstrated that the multiple decomposition approach improved the model performance with an R2 value increasing from 0.8564 to 0.9766 as compared to the models with single decomposition
    corecore