2,627 research outputs found

    Constrained Nonlinear Model Predictive Control of an MMA Polymerization Process via Evolutionary Optimization

    Full text link
    In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller is designed for thermal trajectory tracking of the MMA polymerization. The input control signal to the process is constrained by the maximum thermal power provided by the heaters. The constrained optimization in the model predictive controller is solved via genetic algorithms to minimize a DMC cost function in each sampling interval.Comment: 12 pages, 9 figures, 28 reference

    Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    Get PDF
    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. © 2014 Hogg et al

    ML-Space: hybrid spatial Gillespie and Brownian motion simulation at multiple levels, and a rule-based description language

    Get PDF
    Computer simulations of biological cells as well-stirred systems are well established but neglect the spatial distribution of key actors. In this thesis, a simulation algorithm "ML-Space" for spatial models with dynamic hierarchies is presented. It combines stochastic spatial algorithms in discretized space with individual particles moving in continuous space that have spatial extensions and can contain other particles. For formal descriptions of the systems to be simulated spatially, ML-Space provides a rule-based specification language.Computersimulationen mikrobiologischer Prozesse, bei denen eine homogene Verteilung der Akteure einer Zelle angenommen wird, sind gut etabliert. In dieser Arbeit wird ein räumlicher Simulationsalgorithmus "ML-Space" für Mehrebenenmodelle vorgestellt, der auch dynamische Hierarchien abdeckt. Er vereint stochastische räumliche Algorithmen in diskretisiertem Raum mit individuellen Partikeln mit kontinuierlichen Koordinaten, die andere Partikel enthalten können. Zur formalen Beschreibung der räumlich zu simulierenden Systeme bietet ML-Space eine regelbasierte Modellierungssprache
    • …
    corecore