126 research outputs found

    Recent Results on the Implementation of a Burst Error and Burst Erasure Channel Emulator Using an FPGA Architecture

    Get PDF
    The behaviour of a transmission channel may be simulated using the performance abilities of current generation multiprocessing hardware, namely, a multicore Central Processing Unit (CPU), a general purpose Graphics Processing Unit (GPU), or a Field Programmable Gate Array (FPGA). These were investigated by Cullinan et al. in a recent paper (published in 2012) where these three devices capabilities were compared to determine which device would be best suited towards which specific task. In particular, it was shown that, for the application which is objective of our work (i.e., for a transmission channel simulation), the FPGA is 26.67 times faster than the GPU and 10.76 times faster than the CPU. Motivated by these results, in this paper we propose and present a direct hardware emulation. In particular, a Cyclone II FPGA architecture is implemented to simulate a burst error channel behaviour, in which errors are clustered together, and a burst erasure channel behaviour, in which the erasures are clustered together. The results presented in the paper are valid for any FPGA architecture that may be considered for this scope

    EXIT charts for system design and analysis

    No full text
    Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes

    Concatenated Classic and Neural (CCN) Codes: ConcatenatedAE

    Full text link
    Small neural networks (NNs) used for error correction were shown to improve on classic channel codes and to address channel model changes. We extend the code dimension of any such structure by using the same NN under one-hot encoding multiple times, then serially-concatenated with an outer classic code. We design NNs with the same network parameters, where each Reed-Solomon codeword symbol is an input to a different NN. Significant improvements in block error probabilities for an additive Gaussian noise channel as compared to the small neural code are illustrated, as well as robustness to channel model changes.Comment: 6 pages, IEEE WCNC 202

    Applications of error-control coding

    Full text link

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Low-resolution ADC receiver design, MIMO interference cancellation prototyping, and PHY secrecy analysis.

    Get PDF
    This dissertation studies three independent research topics in the general field of wireless communications. The first topic focuses on new receiver design with low-resolution analog-to-digital converters (ADC). In future massive multiple-input-multiple-output (MIMO) systems, multiple high-speed high-resolution ADCs will become a bottleneck for practical applications because of the hardware complexity and power consumption. One solution to this problem is to adopt low-cost low-precision ADCs instead. In Chapter II, MU-MIMO-OFDM systems only equipped with low-precision ADCs are considered. A new turbo receiver structure is proposed to improve the overall system performance. Meanwhile, ultra-low-cost communication devices can enable massive deployment of disposable wireless relays. In Chapter III, the feasibility of using a one-bit relay cluster to help a power-constrained transmitter for distant communication is investigated. Nonlinear estimators are applied to enable effective decoding. The second topic focuses prototyping and verification of a LTE and WiFi co-existence system, where the operation of LTE in unlicensed spectrum (LTE-U) is discussed. LTE-U extends the benefits of LTE and LTE Advanced to unlicensed spectrum, enabling mobile operators to offload data traffic onto unlicensed frequencies more efficiently and effectively. With LTE-U, operators can offer consumers a more robust and seamless mobile broadband experience with better coverage and higher download speeds. As the coexistence leads to considerable performance instability of both LTE and WiFi transmissions, the LTE and WiFi receivers with MIMO interference canceller are designed and prototyped to support the coexistence in Chapter IV. The third topic focuses on theoretical analysis of physical-layer secrecy with finite blocklength. Unlike upper layer security approaches, the physical-layer communication security can guarantee information-theoretic secrecy. Current studies on the physical-layer secrecy are all based on infinite blocklength. Nevertheless, these asymptotic studies are unrealistic and the finite blocklength effect is crucial for practical secrecy communication. In Chapter V, a practical analysis of secure lattice codes is provided

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    802.11 Payload Iterative decoding between multiple transmission attempts

    Get PDF
    Abstract. The institute of electrical and electronics engineers (IEEE) 802.11 standard specifies widely used technology for wireless local area networks (WLAN). Standard specifies high-performance physical and media access control (MAC) layers for a distributed network but lacks an effective hybrid automatic repeat request (HARQ). Currently, the standard specifies forward error correction (FEC), error detection (ED), and automatic repeat request (ARQ), but in case of decoding errors, the previously transmitted information is not used when decoding the retransmitted packet. This is called Type 1 HARQ. Type 1 HARQ uses received energy inefficiently, but the simple implementation makes it an attractive solution. Unfortunately, research applying more sophisticated HARQ schemes on top of IEEE 802.11 is limited. In this Master’s Thesis, a novel HARQ technology based on packet retransmissions that can be decoded in a turbo-like manner, keeping as much as possible compatibility with vanilla 802.11, is proposed. The proposed technology is simulated with both the IEEE 802.11 code and with the robust, efficient and smart communication in unpredictable environments (RESCUE) code. An additional interleaver is added before the convolutional encoder in the proposed technology, interleaving either the whole frame or only the payload to enable effective iterative decoding. For received frames, turbo-like iterations are done between initially transmitted packet copy and retransmissions. Results are compared against the non-iterative combining method maximizing signal-to-noise ratio (SNR), maximum ratio combining (MRC). The main design goal for this technology is to maintain compatibility with the 802.11 standard while allowing efficient HARQ. Other design goals are range extension, higher throughput, and better performance in terms of bit error rate (BER) and frame error rate (FER). This technology can be used for range extension at low SNR range and may provide up to 4 dB gain at medium SNR range compared to MRC. At high SNR, technology can reduce the penalty from retransmission allowing higher average modulation and coding scheme (MCS). However, these gains come with the cost of computational complexity from the iterative decoding. The main limiting factors of the proposed technology are decoding errors in the header and the scrambler area, and resource-hungry-processing. In simulations, perfect synchronization and packet detection is assumed, but in reality, especially at low SNR, packet detection and synchronization would be challenging. 802.11 pakettien iteratiivinen dekoodaus lĂ€hetysten vĂ€lillĂ€. TiivistelmĂ€. IEEE 802.11-standardi mÀÀrittelee yleisesti kĂ€ytetyn teknologian langattomille lĂ€hiverkoille. Standardissa mÀÀritellÀÀn tehokas fyysinen- ja verkkoliityntĂ€kerros hajautetuille verkoille, mutta siitĂ€ puuttuu tehokas yhdistetty automaattinen uudelleenlĂ€hetys. NykyisellÀÀn standardi mÀÀrittelee virheenkorjaavan koodin, virheellisen paketin tunnistuksen sekĂ€ automaattisen uudelleenlĂ€hetyksen, mutta aikaisemmin lĂ€hetetyn paketin informaatiota ei kĂ€ytetĂ€ hyvĂ€ksi uudelleenlĂ€hetystilanteessa. TĂ€mĂ€ menetelmĂ€ tunnetaan tyypin yksi yhdistettynĂ€ automaattisena uudelleenlĂ€hetyksenĂ€. Tyypin yksi yhdistetty automaattinen uudelleenlĂ€hetys kĂ€yttÀÀ vastaanotettua signaalia tehottomasti, mutta yksinkertaisuus tekee siitĂ€ houkuttelevan vaihtoehdon. Valitettavasti edistyneempien uudelleenlĂ€hetysvaihtoehtojen tutkimusta 802.11-standardiin on rajoitetusti. TĂ€ssĂ€ diplomityössĂ€ esitellÀÀn uusi yhdistetty uudelleenlĂ€hetysteknologia, joka pohjautuu pakettien uudelleenlĂ€hetykseen, sallien turbo-tyylisen dekoodaamisen sĂ€ilyttĂ€en mahdollisimman hyvĂ€n taaksepĂ€in yhteensopivuutta alkuperĂ€isen 802.11-standardin kanssa. TĂ€mĂ€ teknologia on simuloitu kĂ€yttĂ€en sekĂ€ 802.11- ettĂ€ nk. RESCUE-virheenkorjauskoodia. Teknologiassa uusi lomittaja on lisĂ€tty konvoluutio-enkoodaajan eteen, sallien tehokkaan iteratiivisen dekoodaamisen, lomittaen joko koko paketin tai ainoastaan hyötykuorman. Vastaanotetuille paketeille tehdÀÀn turbo-tyyppinen iteraatio alkuperĂ€isen vastaanotetun kopion ja uudelleenlĂ€hetyksien vĂ€lillĂ€. Tuloksia vertaillaan eiiteratiiviseen yhdistĂ€mismenetelmÀÀn, maksimisuhdeyhdistelyyn, joka maksimoi yhdistetyn signaali-kohinasuhteen. TĂ€rkeimpĂ€nĂ€ suunnittelutavoitteena tĂ€ssĂ€ työssĂ€ on tehokas uudelleenlĂ€hetysmenetelmĂ€, joka yllĂ€pitÀÀ taaksepĂ€in yhteensopivuutta IEEE 802.11-standardin kanssa. Muita tavoitteita ovat kantaman lisĂ€ys, nopeampi yhteys ja matalampi bitti- ja pakettivirhesuhde. KehitettyĂ€ teknologiaa voidaan kĂ€yttÀÀ kantaman lisĂ€ykseen matalan signaalikohinasuhteen vallitessa ja se on jopa 4 dB parempi kohtuullisella signaalikohinasuhteella kuin maksimisuhdeyhdistely. Korkealla signaali-kohinasuhteella teknologiaa voidaan kĂ€yttÀÀ pienentĂ€mÀÀn hĂ€viötĂ€ epĂ€onnistuneesta paketinlĂ€hetyksestĂ€ ja tĂ€ten sallien korkeamman modulaatio-koodiasteen kĂ€yttĂ€misen. Valitettavasti nĂ€mĂ€ parannukset tulevat kasvaneen laskennallisen monimutkaisuuden kustannuksella, johtuen iteratiivisesta dekoodaamisesta. Isoimmat rajoittavat tekijĂ€t teknologian kĂ€ytössĂ€ ovat dekoodausvirheet otsikossa ja datamuokkaimen siemenessĂ€. TĂ€mĂ€n lisĂ€ksi kĂ€yttöÀ rajoittaa resurssisyöppö prosessointi. Simulaatioissa oletetaan tĂ€ydellinen synkronisointi, mutta todellisuudessa, erityisesti matalalla signaali-kohinasuhteella, paketin tunnistus ja synkronointi voivat olla haasteellisia

    Combined Time, Frecuency and Space Diversity in Multimedia Mobile Broadcasting Systems

    Full text link
    El uso combinado de diversidad en el dominio temporal, frecuencial y espacial constituye una valiosa herramienta para mejorar la recepciĂłn de servicios de difusiĂłn mĂłviles. Gracias a la mejora conseguida por las tĂ©cnicas de diversidad es posible extender la cobertura de los servicios mĂłviles ademĂĄs de reducir la infraestructura de red. La presente tesis investiga el uso de tĂ©cnicas de diversidad para la provisiĂłn de servicios mĂłviles en la familia europea de sistemas de difusiĂłn terrestres estandarizada por el prpoyecto DVB (Digital Video Broadcasting). Esto incluye la primera y segunda generaciĂłn de sistemas DVB-T (Terrestrial), DVB-NGH (Handheld), y DVB-T2 (Terrestrial 2nd generation), asĂ­ como el sistema de siguiente generaciĂłn DVB-NGH. No obstante, el estudio llevado a cabo en la tesis es genĂ©rico y puede aplicarse a futuras evoluciones de estĂĄndares como el japonĂ©s ISDB-T o el americano ATSC. Las investigaciones realizadas dentro del contexto de DVB-T, DVB-H y DVBT2 tienen como objetivo la transmisiĂłn simultĂĄnea de servicios fijos y mĂłviles en redes terrestres. Esta Convergencia puede facilitar la introducciĂłn de servicios mĂłviles de TB debido a la reutilizaciĂłn de espectro, contenido e infraestructura. De acuerdo a los resultados, la incorporaciĂłn de entrelazado temporal en la capa fĂ­sica para diversidad temporal, y de single-input multiple-output (SIMO) para diversidad espacial, son esenciales para el rendimiento de sistemas mĂłviles de difusiĂłn. A pesar de que las tĂ©cnicas upper later FEC (UL-FEC) pueden propocionar diversidad temporal en sistemas de primera generaciĂłn como DVB-T y DVB-H, requieren la transmisiĂłn de paridad adicional y no son Ăștiles para la recepciĂłn estĂĄtica. El anĂĄlisis en tïżœĂ±erminos de link budjget revela que las tĂ©cnicas de diversidad noson suficientes para facilitar la provision de servicios mĂłviles en redes DVB-T y DVB-T2 planificadas para recepciĂłn fija. Sin embargo, el uso de diversidad en redes planificadas para recepciĂłn portableGozĂĄlvez Serrano, D. (2012). Combined Time, Frecuency and Space Diversity in Multimedia Mobile Broadcasting Systems [Tesis doctoral no publicada]. Universitat PolitĂšcnica de ValĂšncia. https://doi.org/10.4995/Thesis/10251/16273Palanci
    • 

    corecore