377 research outputs found

    Characterisation of shallow marine sediments using high-resolution velocity analysis and genetic-algorithm-driven 1D elastic full-waveform inversion

    Get PDF
    We estimate the elastic properties of marine sediments beneath the seabed by means of high-resolution velocity analysis and one-dimensional elastic full-waveform inversion performed on twodimensional broad-band seismic data of a well-site survey. A high-resolution velocity function is employed to exploit the broad frequency band of the data and to derive the P-wave velocity field with a high degree of accuracy. To derive a complete elastic characterisation in terms of P-wave and S-wave velocities (Vp, Vs) and density of the subsurface, and to increase the resolution of the Vp estimates, we apply a one-dimensional elastic full-waveform inversion in which the outcomes derived from the velocity analysis are used as a priori information to define the Vp search range. The one-dimensional inversion is done using genetic algorithm as the optimisation method. It is performed by considering two misfit functions: the first uses the entire waveform to compute the misfit between modelled and observed seismograms, and the second considers the envelope of the seismograms, thus relaxing the requirement of an exact estimation of the wavelet phase. The full-waveform inversion and the high-resolution velocity analysis yield comparable Vp profiles, but the full-waveform inversion reconstruction is much more detailed. Regarding the full-waveform inversion results, the final depth models of P- and S-wave velocities and density show a fine-layered structure with a significant increase in velocities and density at shallow depth, which may indicate the presence of a consolidated layer. The very similar velocities and density-depth trends obtained by employing the two different misfit functions increase our confidence in the reliability of the predicted subsurface models

    Anisotropic seismic tomography with the reversible jump Markov chain Monte Carlo

    Get PDF
    The established isotropic tomographic models show the features of subduction zones in terms of seismic velocity anomalies, but they are generally subjected to the generation of artifacts due to the lack of anisotropy in forward modelling. There is evidence for the significant influence of seismic anisotropy in the mid-upper mantle, especially for boundary layers like subducting slabs. As consequence, in isotropic models artifacts may be misinterpreted as compositional or thermal heterogeneities. In this thesis project the application of a trans-dimensional Metropolis-Hastings method is investigated in the context of anisotropic seismic tomography. This choice arises as a response to the important limitations introduced by traditional inversion methods which use iterative procedures of optimization of a function object of the inversion. On the basis of a first implementation of the Bayesian sampling algorithm, the code is tested with some cartesian two-dimensional models, and then extended to polar coordinates and dimensions typical of subduction zones, the main focus proposed for this method. Synthetic experiments with increasing complexity are realized to test the performance of the method and the precautions for multiple contexts, taking into account also the possibility to apply seismic ray-tracing iteratively. The code developed is tested mainly for 2D inversions, future extensions will allow the anisotropic inversion of seismological data to provide more realistic imaging of real subduction zones, less subjected to generation of artifacts

    Modeling and inversion of seismic data using multiple scattering, renormalization and homotopy methods

    Get PDF
    Seismic scattering theory plays an important role in seismic forward modeling and is the theoretical foundation for various seismic imaging methods. Full waveform inversion is a powerful technique for obtaining a high-resolution model of the subsurface. One objective of this thesis is to develop convergent scattering series solutions of the Lippmann-Schwinger equation in strongly scattering media using renormalization and homotopy methods. Other objectives of this thesis are to develop efficient full waveform inversion methods of time-lapse seismic data and, to investigate uncertainty quantification in full waveform inversion for anisotropic elastic media based on integral equation approaches and the iterated extended Kalman filter. The conventional Born scattering series is obtained by expanding the Lippmann-Schwinger equation in terms of an iterative solution based on perturbation theory. Such an expansion assumes weak scattering and may have the problems of convergence in strongly scattering media. This thesis presents two scattering series, referred to as convergent Born series (CBS) and homotopy analysis method (HAM) scattering series for frequency-domain seismic wave modeling. For the convergent Born series, a physical interpretation from the renormalization prospective is given. The homotopy scattering series is derived by using homotopy analysis method, which is based on a convergence control parameter hh and a convergence control operator HH that one can use to ensure convergence for strongly scattering media. The homotopy scattering scattering series solutions of the Lippmann-Schwinger equation, which is convergent in strongly scattering media. The homotopy scattering series is a kind of unified scattering series theory that includes the conventional and convergent Born series as special cases. The Fast Fourier Transform (FFT) is employed for efficient implementation of matrix-vector multiplication for the convergent Born series and the homotopy scattering series. This thesis presents homotopy methods for ray based seismic modeling in strongly anisotropic media. To overcome several limitations of small perturbations and weak anisotropy in obtaining the traveltime approximations in anisotropic media by expanding the anisotropic eikonal equation in terms of the anisotropic parameters and the elliptically anisotropic eikonal equation based on perturbation theory, this study applies the homotopy analysis method to the eikonal equation. Then this thesis presents a retrieved zero-order deformation equation that creates a map from the anisotropic eikonal equation to a linearized partial differential equation system. The new traveltime approximations are derived by using the linear and nonlinear operators in the retrieved zero-order deformation equation. Flexibility on variable anisotropy parameters is naturally incorporated into the linear differential equations, allowing a medium of arbitrarily anisotropy. This thesis investigates efficient target-oriented inversion strategies for improving full waveform inversion of time-lapse seismic data based on extending the distorted Born iterative T-matrix inverse scattering to a local inversion of a small region of interest (e. g. reservoir under production). The target-oriented approach is more efficient for inverting the monitor data. The target-oriented inversion strategy requires properly specifying the wavefield extrapolation operators in the integral equation formulation. By employing the T-matrix and the Gaussian beam based Green’s function, the wavefield extrapolation for the time-lapse inversion is performed in the baseline model from the survey surface to the target region. I demonstrate the method by presenting numerical examples illustrating the sequential and double difference strategies. To quantify the uncertainty and multiparameter trade-off in the full waveform inversion for anisotropic elastic media, this study applies the iterated extended Kalman filter to anisotropic elastic full waveform inversion based on the integral equation method. The sensitivity matrix is an explicit representation with Green’s functions based on the nonlinear inverse scattering theory. Taking the similarity of sequential strategy between the multi-scale frequency domain full waveform inversion and data assimilation with an iterated extended Kalman filter, this study applies the explicit representation of sensitivity matrix to the the framework of Bayesian inference and then estimate the uncertainties in the full waveform inversion. This thesis gives results of numerical tests with examples for anisotropic elastic media. They show that the proposed Bayesian inversion method can provide reasonable reconstruction results for the elastic coefficients of the stiffness tensor and the framework is suitable for accessing the uncertainties and analysis of parameter trade-offs

    Modelling and quantification of structural uncertainties in petroleum reservoirs assisted by a hybrid cartesian cut cell/enriched multipoint flux approximation approach

    Get PDF
    Efficient and profitable oil production is subject to make reliable predictions about reservoir performance. However, restricted knowledge about reservoir distributed properties and reservoir structure calls for History Matching in which the reservoir model is calibrated to emulate the field observed history. Such an inverse problem yields multiple history-matched models which might result in different predictions of reservoir performance. Uncertainty Quantification restricts the raised model uncertainties and boosts the model reliability for the forecasts of future reservoir behaviour. Conventional approaches of Uncertainty Quantification ignore large scale uncertainties related to reservoir structure, while structural uncertainties can influence the reservoir forecasts more intensely compared with petrophysical uncertainty. What makes the quantification of structural uncertainty impracticable is the need for global regridding at each step of History Matching process. To resolve this obstacle, we develop an efficient methodology based on Cartesian Cut Cell Method which decouples the model from its representation onto the grid and allows uncertain structures to be varied as a part of History Matching process. Reduced numerical accuracy due to cell degeneracies in the vicinity of geological structures is adequately compensated with an enhanced scheme of class Locally Conservative Flux Continuous Methods (Extended Enriched Multipoint Flux Approximation Method abbreviated to extended EMPFA). The robustness and consistency of proposed Hybrid Cartesian Cut Cell/extended EMPFA approach are demonstrated in terms of true representation of geological structures influence on flow behaviour. In this research, the general framework of Uncertainty Quantification is extended and well-equipped by proposed approach to tackle uncertainties of different structures such as reservoir horizons, bedding layers, faults and pinchouts. Significant improvements in the quality of reservoir recovery forecasts and reservoir volume estimation are presented for synthetic models of uncertain structures. Also this thesis provides a comparative study of structural uncertainty influence on reservoir forecasts among various geological structures

    Computational Inverse Problems for Partial Differential Equations

    Get PDF
    The problem of determining unknown quantities in a PDE from measurements of (part of) the solution to this PDE arises in a wide range of applications in science, technology, medicine, and finance. The unknown quantity may e.g. be a coefficient, an initial or a boundary condition, a source term, or the shape of a boundary. The identification of such quantities is often computationally challenging and requires profound knowledge of the analytical properties of the underlying PDE as well as numerical techniques. The focus of this workshop was on applications in phase retrieval, imaging with waves in random media, and seismology of the Earth and the Sun, a further emphasis was put on stochastic aspects in the context of uncertainty quantification and parameter identification in stochastic differential equations. Many open problems and mathematical challenges in application fields were addressed, and intensive discussions provided an insight into the high potential of joining deep knowledge in numerical analysis, partial differential equations, and regularization, but also in mathematical statistics, homogenization, optimization, differential geometry, numerical linear algebra, and variational analysis to tackle these challenges

    Bayesian inversion and model selection of heterogeneities in geostatistical subsurface modeling

    Get PDF
    • …
    corecore