41,061 research outputs found

    Personalized Video Recommendation Using Rich Contents from Videos

    Full text link
    Video recommendation has become an essential way of helping people explore the massive videos and discover the ones that may be of interest to them. In the existing video recommender systems, the models make the recommendations based on the user-video interactions and single specific content features. When the specific content features are unavailable, the performance of the existing models will seriously deteriorate. Inspired by the fact that rich contents (e.g., text, audio, motion, and so on) exist in videos, in this paper, we explore how to use these rich contents to overcome the limitations caused by the unavailability of the specific ones. Specifically, we propose a novel general framework that incorporates arbitrary single content feature with user-video interactions, named as collaborative embedding regression (CER) model, to make effective video recommendation in both in-matrix and out-of-matrix scenarios. Our extensive experiments on two real-world large-scale datasets show that CER beats the existing recommender models with any single content feature and is more time efficient. In addition, we propose a priority-based late fusion (PRI) method to gain the benefit brought by the integrating the multiple content features. The corresponding experiment shows that PRI brings real performance improvement to the baseline and outperforms the existing fusion methods

    Learning Heterogeneous Similarity Measures for Hybrid-Recommendations in Meta-Mining

    Get PDF
    The notion of meta-mining has appeared recently and extends the traditional meta-learning in two ways. First it does not learn meta-models that provide support only for the learning algorithm selection task but ones that support the whole data-mining process. In addition it abandons the so called black-box approach to algorithm description followed in meta-learning. Now in addition to the datasets, algorithms also have descriptors, workflows as well. For the latter two these descriptions are semantic, describing properties of the algorithms. With the availability of descriptors both for datasets and data mining workflows the traditional modelling techniques followed in meta-learning, typically based on classification and regression algorithms, are no longer appropriate. Instead we are faced with a problem the nature of which is much more similar to the problems that appear in recommendation systems. The most important meta-mining requirements are that suggestions should use only datasets and workflows descriptors and the cold-start problem, e.g. providing workflow suggestions for new datasets. In this paper we take a different view on the meta-mining modelling problem and treat it as a recommender problem. In order to account for the meta-mining specificities we derive a novel metric-based-learning recommender approach. Our method learns two homogeneous metrics, one in the dataset and one in the workflow space, and a heterogeneous one in the dataset-workflow space. All learned metrics reflect similarities established from the dataset-workflow preference matrix. We demonstrate our method on meta-mining over biological (microarray datasets) problems. The application of our method is not limited to the meta-mining problem, its formulations is general enough so that it can be applied on problems with similar requirements

    A Hybrid Web Recommendation System based on the Improved Association Rule Mining Algorithm

    Full text link
    As the growing interest of web recommendation systems those are applied to deliver customized data for their users, we started working on this system. Generally the recommendation systems are divided into two major categories such as collaborative recommendation system and content based recommendation system. In case of collaborative recommen-dation systems, these try to seek out users who share same tastes that of given user as well as recommends the websites according to the liking given user. Whereas the content based recommendation systems tries to recommend web sites similar to those web sites the user has liked. In the recent research we found that the efficient technique based on asso-ciation rule mining algorithm is proposed in order to solve the problem of web page recommendation. Major problem of the same is that the web pages are given equal importance. Here the importance of pages changes according to the fre-quency of visiting the web page as well as amount of time user spends on that page. Also recommendation of newly added web pages or the pages those are not yet visited by users are not included in the recommendation set. To over-come this problem, we have used the web usage log in the adaptive association rule based web mining where the asso-ciation rules were applied to personalization. This algorithm was purely based on the Apriori data mining algorithm in order to generate the association rules. However this method also suffers from some unavoidable drawbacks. In this paper we are presenting and investigating the new approach based on weighted Association Rule Mining Algorithm and text mining. This is improved algorithm which adds semantic knowledge to the results, has more efficiency and hence gives better quality and performances as compared to existing approaches.Comment: 9 pages, 7 figures, 2 table

    Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text

    Full text link
    Collaborative filtering (CF) is the key technique for recommender systems (RSs). CF exploits user-item behavior interactions (e.g., clicks) only and hence suffers from the data sparsity issue. One research thread is to integrate auxiliary information such as product reviews and news titles, leading to hybrid filtering methods. Another thread is to transfer knowledge from other source domains such as improving the movie recommendation with the knowledge from the book domain, leading to transfer learning methods. In real-world life, no single service can satisfy a user's all information needs. Thus it motivates us to exploit both auxiliary and source information for RSs in this paper. We propose a novel neural model to smoothly enable Transfer Meeting Hybrid (TMH) methods for cross-domain recommendation with unstructured text in an end-to-end manner. TMH attentively extracts useful content from unstructured text via a memory module and selectively transfers knowledge from a source domain via a transfer network. On two real-world datasets, TMH shows better performance in terms of three ranking metrics by comparing with various baselines. We conduct thorough analyses to understand how the text content and transferred knowledge help the proposed model.Comment: 11 pages, 7 figures, a full version for the WWW 2019 short pape

    Joint Topic-Semantic-aware Social Recommendation for Online Voting

    Full text link
    Online voting is an emerging feature in social networks, in which users can express their attitudes toward various issues and show their unique interest. Online voting imposes new challenges on recommendation, because the propagation of votings heavily depends on the structure of social networks as well as the content of votings. In this paper, we investigate how to utilize these two factors in a comprehensive manner when doing voting recommendation. First, due to the fact that existing text mining methods such as topic model and semantic model cannot well process the content of votings that is typically short and ambiguous, we propose a novel Topic-Enhanced Word Embedding (TEWE) method to learn word and document representation by jointly considering their topics and semantics. Then we propose our Joint Topic-Semantic-aware social Matrix Factorization (JTS-MF) model for voting recommendation. JTS-MF model calculates similarity among users and votings by combining their TEWE representation and structural information of social networks, and preserves this topic-semantic-social similarity during matrix factorization. To evaluate the performance of TEWE representation and JTS-MF model, we conduct extensive experiments on real online voting dataset. The results prove the efficacy of our approach against several state-of-the-art baselines.Comment: The 26th ACM International Conference on Information and Knowledge Management (CIKM 2017
    • …
    corecore