13,972 research outputs found

    Reasoning with Forest Logic Programs and f-hybrid Knowledge Bases

    Full text link
    Open Answer Set Programming (OASP) is an undecidable framework for integrating ontologies and rules. Although several decidable fragments of OASP have been identified, few reasoning procedures exist. In this article, we provide a sound, complete, and terminating algorithm for satisfiability checking w.r.t. Forest Logic Programs (FoLPs), a fragment of OASP where rules have a tree shape and allow for inequality atoms and constants. The algorithm establishes a decidability result for FoLPs. Although believed to be decidable, so far only the decidability for two small subsets of FoLPs, local FoLPs and acyclic FoLPs, has been shown. We further introduce f-hybrid knowledge bases, a hybrid framework where \SHOQ{} knowledge bases and forest logic programs co-exist, and we show that reasoning with such knowledge bases can be reduced to reasoning with forest logic programs only. We note that f-hybrid knowledge bases do not require the usual (weakly) DL-safety of the rule component, providing thus a genuine alternative approach to current integration approaches of ontologies and rules

    Efficient paraconsistent reasoning with rules and ontologies for the semantic web

    Get PDF
    Ontologies formalized by means of Description Logics (DLs) and rules in the form of Logic Programs (LPs) are two prominent formalisms in the field of Knowledge Representation and Reasoning. While DLs adhere to the OpenWorld Assumption and are suited for taxonomic reasoning, LPs implement reasoning under the Closed World Assumption, so that default knowledge can be expressed. However, for many applications it is useful to have a means that allows reasoning over an open domain and expressing rules with exceptions at the same time. Hybrid MKNF knowledge bases make such a means available by formalizing DLs and LPs in a common logic, the Logic of Minimal Knowledge and Negation as Failure (MKNF). Since rules and ontologies are used in open environments such as the Semantic Web, inconsistencies cannot always be avoided. This poses a problem due to the Principle of Explosion, which holds in classical logics. Paraconsistent Logics offer a solution to this issue by assigning meaningful models even to contradictory sets of formulas. Consequently, paraconsistent semantics for DLs and LPs have been investigated intensively. Our goal is to apply the paraconsistent approach to the combination of DLs and LPs in hybrid MKNF knowledge bases. In this thesis, a new six-valued semantics for hybrid MKNF knowledge bases is introduced, extending the three-valued approach by Knorr et al., which is based on the wellfounded semantics for logic programs. Additionally, a procedural way of computing paraconsistent well-founded models for hybrid MKNF knowledge bases by means of an alternating fixpoint construction is presented and it is proven that the algorithm is sound and complete w.r.t. the model-theoretic characterization of the semantics. Moreover, it is shown that the new semantics is faithful w.r.t. well-studied paraconsistent semantics for DLs and LPs, respectively, and maintains the efficiency of the approach it extends

    A Goal-Directed Implementation of Query Answering for Hybrid MKNF Knowledge Bases

    Full text link
    Ontologies and rules are usually loosely coupled in knowledge representation formalisms. In fact, ontologies use open-world reasoning while the leading semantics for rules use non-monotonic, closed-world reasoning. One exception is the tightly-coupled framework of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about individuals to be jointly derived via entailment from an ontology and inferences from rules. Nonetheless, the practical usefulness of MKNF has not always been clear, although recent work has formalized a general resolution-based method for querying MKNF when rules are taken to have the well-founded semantics, and the ontology is modeled by a general oracle. That work leaves open what algorithms should be used to relate the entailments of the ontology and the inferences of rules. In this paper we provide such algorithms, and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules under the well-founded semantics and a (monotonic) ontology, represented by a CDF Type-1 (ALQ) theory. To appear in Theory and Practice of Logic Programming (TPLP

    Hybrid Rules with Well-Founded Semantics

    Get PDF
    A general framework is proposed for integration of rules and external first order theories. It is based on the well-founded semantics of normal logic programs and inspired by ideas of Constraint Logic Programming (CLP) and constructive negation for logic programs. Hybrid rules are normal clauses extended with constraints in the bodies; constraints are certain formulae in the language of the external theory. A hybrid program is a pair of a set of hybrid rules and an external theory. Instances of the framework are obtained by specifying the class of external theories, and the class of constraints. An example instance is integration of (non-disjunctive) Datalog with ontologies formalized as description logics. The paper defines a declarative semantics of hybrid programs and a goal-driven formal operational semantics. The latter can be seen as a generalization of SLS-resolution. It provides a basis for hybrid implementations combining Prolog with constraint solvers. Soundness of the operational semantics is proven. Sufficient conditions for decidability of the declarative semantics, and for completeness of the operational semantics are given

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables

    Towards Closed World Reasoning in Dynamic Open Worlds (Extended Version)

    Full text link
    The need for integration of ontologies with nonmonotonic rules has been gaining importance in a number of areas, such as the Semantic Web. A number of researchers addressed this problem by proposing a unified semantics for hybrid knowledge bases composed of both an ontology (expressed in a fragment of first-order logic) and nonmonotonic rules. These semantics have matured over the years, but only provide solutions for the static case when knowledge does not need to evolve. In this paper we take a first step towards addressing the dynamics of hybrid knowledge bases. We focus on knowledge updates and, considering the state of the art of belief update, ontology update and rule update, we show that current solutions are only partial and difficult to combine. Then we extend the existing work on ABox updates with rules, provide a semantics for such evolving hybrid knowledge bases and study its basic properties. To the best of our knowledge, this is the first time that an update operator is proposed for hybrid knowledge bases.Comment: 40 pages; an extended version of the article published in Theory and Practice of Logic Programming, 10 (4-6): 547 - 564, July. Copyright 2010 Cambridge University Pres

    Extended RDF: Computability and Complexity Issues

    Get PDF
    ERDF stable model semantics is a recently proposed semantics for ERDF ontologies and a faithful extension of RDFS semantics on RDF graphs. In this paper, we elaborate on the computability and complexity issues of the ERDF stable model semantics. Based on the undecidability result of ERDF stable model semantics, decidability under this semantics cannot be achieved, unless ERDF ontologies of restricted syntax are considered. Therefore, we propose a slightly modified semantics for ERDF ontologies, called ERDF #n- stable model semantics. We show that entailment under this semantics is, in general, decidable and also extends RDFS entailment. Equivalence statements between the two semantics are provided. Additionally, we provide algorithms that compute the ERDF #n-stable models of syntax-restricted and general ERDF ontologies. Further, we provide complexity results for the ERDF #nstable model semantics on syntax-restricted and general ERDF ontologies. Finally, we provide complexity results for the ERDF stable model semantics on syntax-restricted ERDF ontologies

    Challenges in Bridging Social Semantics and Formal Semantics on the Web

    Get PDF
    This paper describes several results of Wimmics, a research lab which names stands for: web-instrumented man-machine interactions, communities, and semantics. The approaches introduced here rely on graph-oriented knowledge representation, reasoning and operationalization to model and support actors, actions and interactions in web-based epistemic communities. The re-search results are applied to support and foster interactions in online communities and manage their resources
    • …
    corecore