17,803 research outputs found

    A Language and Hardware Independent Approach to Quantum-Classical Computing

    Full text link
    Heterogeneous high-performance computing (HPC) systems offer novel architectures which accelerate specific workloads through judicious use of specialized coprocessors. A promising architectural approach for future scientific computations is provided by heterogeneous HPC systems integrating quantum processing units (QPUs). To this end, we present XACC (eXtreme-scale ACCelerator) --- a programming model and software framework that enables quantum acceleration within standard or HPC software workflows. XACC follows a coprocessor machine model that is independent of the underlying quantum computing hardware, thereby enabling quantum programs to be defined and executed on a variety of QPUs types through a unified application programming interface. Moreover, XACC defines a polymorphic low-level intermediate representation, and an extensible compiler frontend that enables language independent quantum programming, thus promoting integration and interoperability across the quantum programming landscape. In this work we define the software architecture enabling our hardware and language independent approach, and demonstrate its usefulness across a range of quantum computing models through illustrative examples involving the compilation and execution of gate and annealing-based quantum programs

    Network Community Detection On Small Quantum Computers

    Full text link
    In recent years a number of quantum computing devices with small numbers of qubits became available. We present a hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size. The proposed approach is applied to the network community detection problem. QLS is hardware-agnostic and easily extendable to new quantum computing devices as they become available. We demonstrate it to solve the 2-community detection problem on graphs of size up to 410 vertices using the 16-qubit IBM quantum computer and D-Wave 2000Q, and compare their performance with the optimal solutions. Our results demonstrate that QLS perform similarly in terms of quality of the solution and the number of iterations to convergence on both types of quantum computers and it is capable of achieving results comparable to state-of-the-art solvers in terms of quality of the solution including reaching the optimal solutions

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers
    corecore