934 research outputs found

    An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems

    Full text link
    Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.Comment: Submitted to IEEE Journal of Selected Topics in Signal Processin

    Codeword Selection and Hybrid Precoding for Multiuser Millimeter Wave Massive MIMO Systems

    Full text link
    Aiming at maximizing the achievable sum-rate of wideband multiuser mmWave massive MIMO systems, the hybrid precoding is studied. Since each computation of the achievable sum-rate can be performed only after the analog precoder and digital precoder are both determined, the maximization of the achievable sum-rate has intractable computational complexity. By introducing the interference free (IF) achievable sum-rate, the design of the analog and digital precoders can be decoupled. To avoid the beam conflict and maximize the IF achievable sum-rate, a Hungarian-based codeword selection algorithm is proposed for the analog precoding design. Simulation results verify the effectiveness of the proposed scheme and show that better performance can be achieved compared with existing schemes

    A Hardware-Efficient Hybrid Beamforming Solution for mmWave MIMO Systems

    Full text link
    In millimeter wave (mmWave) communication systems, existing hybrid beamforming solutions generally require a large number of high-resolution phase shifters (PSs) to realize analog beamformers, which still suffer from high hardware complexity and power consumption. Targeting at this problem, this article introduces a novel hardware-efficient hybrid precoding/combining architecture, which only employs a limited number of simple phase over-samplers (POSs) and a switch (SW) network to achieve maximum hardware efficiency while maintaining satisfactory spectral efficiency performance. The POS can be realized by a simple circuit and simultaneously outputs several parallel signals with different phases. With the aid of a simple switch network, the analog precoder/combiner is implemented by feeding the signals with appropriate phases to antenna arrays or RF chains. We analyze the design challenges of this POS-SW-based hybrid beamforming architecture and present potential solutions to the fundamental issues, especially the precoder/combiner design and the channel estimation strategy. Simulation results demonstrate that this hardware-efficient structure can achieve comparable spectral efficiency but much higher energy efficiency than that of the traditional structures

    Dynamic Subarrays for Hybrid Precoding in Wideband mmWave MIMO Systems

    Full text link
    Hybrid analog/digital precoding architectures can address the trade-off between achievable spectral efficiency and power consumption in large-scale MIMO systems. This makes it a promising candidate for millimeter wave systems, which require deploying large antenna arrays at both the transmitter and receiver to guarantee sufficient received signal power. Most prior work on hybrid precoding focused on narrowband channels and assumed fully-connected hybrid architectures. MmWave systems, though, are expected to be wideband with frequency selectivity. In this paper, a closed-form solution for fully-connected OFDM-based hybrid analog/digital precoding is developed for frequency selective mmWave systems. This solution is then extended to partially-connected but fixed architectures in which each RF chain is connected to a specific subset of the antennas. The derived solutions give insights into how the hybrid subarray structures should be designed. Based on them, a novel technique that dynamically constructs the hybrid subarrays based on the long-term channel characteristics is developed. Simulation results show that the proposed hybrid precoding solutions achieve spectral efficiencies close to that obtained with fully-digital architectures in wideband mmWave channels. Further, the results indicate that the developed dynamic subarray solution outperforms the fixed hybrid subarray structures in various system and channel conditions.Comment: submitted to IEEE Transactions on Wireless Communication

    Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems

    Full text link
    Hybrid analog/digital precoding offers a compromise between hardware complexity and system performance in millimeter wave (mmWave) systems. This type of precoding allows mmWave systems to leverage large antenna array gains that are necessary for sufficient link margin, while permitting low cost and power consumption hardware. Most prior work has focused on hybrid precoding for narrowband mmWave systems, with perfect or estimated channel knowledge at the transmitter. MmWave systems, however, will likely operate on wideband channels with frequency selectivity. Therefore, this paper considers wideband mmWave systems with a limited feedback channel between the transmitter and receiver. First, the optimal hybrid precoding design for a given RF codebook is derived. This provides a benchmark for any other heuristic algorithm and gives useful insights into codebook designs. Second, efficient hybrid analog/digital codebooks are developed for spatial multiplexing in wideband mmWave systems. Finally, a low-complexity yet near-optimal greedy frequency selective hybrid precoding algorithm is proposed based on Gram-Schmidt orthogonalization. Simulation results show that the developed hybrid codebooks and precoder designs achieve very good performance compared with the unconstrained solutions while requiring much less complexity.Comment: 42 pages, 8 figures, IEEE Transactions on Communications (Invited Paper) [Some typos are fixed in this version

    Multi-User Hybrid Precoding for Dynamic Subarrays in MmWave Massive MIMO Systems

    Full text link
    Dynamic subarray achieves a compromise between sum rate and hardware complexity for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems in which antenna elements are dynamically partitioned to radio frequency (RF) chain according to the channel state information.} However, multi-user hybrid precoding for the dynamic subarray is intractable to solve as the antenna partitioning would result in the user unfairness and multi-user interference (MUI). In this paper, a novel multi-user hybrid precoding framework is proposed for the dynamic subarray architecture. Different from the existing schemes, the base station (BS) firstly selects the multi-user set based on the analog effective channel. And then the antenna partitioning algorithm allocates each antenna element to RF chain according to the maximal increment of the signal to the interference noise ratio (SINR). Finally, the hybrid precoding is optimized for the dynamic subarray architecture. By calculating SINRs on the analog effective channels of the selected users, the antenna partitioning can greatly reduce computation complexity and the size of the search space. Moreover, it also guarantees the user fairness since each antenna element is allocated to acquire the maximal SINR increment of all selected users. \textcolor{blue}{Extensive simulation results demonstrate that both the energy efficiency and sum rate of the proposed solution obviously outperforms that of the fixed subarrays, and obtains higher energy efficiency with slight loss of sum rate compared with the fully-connected architecture

    Channel Tracking and Hybrid Precoding for Wideband Hybrid Millimeter Wave MIMO Systems

    Full text link
    A major source of difficulty when operating with large arrays at mmWave frequencies is to estimate the wideband channel, since the use of hybrid architectures acts as a compression stage for the received signal. Moreover, the channel has to be tracked and the antenna arrays regularly reconfigured to obtain appropriate beamforming gains when a mobile setting is considered. In this paper, we focus on the problem of channel tracking for frequency-selective mmWave channels, and propose two novel channel tracking algorithms that leverage prior statistical information on the angles-of-arrival and angles-of-departure. Exploiting this prior information, we also propose a precoding and combining design method to increase the received SNR during channel tracking, such that near-optimum data rates can be obtained with low-overhead. In our numerical results, we analyze the performance of our proposed algorithms for different system parameters. Simulation results show that, using channel realizations extracted from the 5G New Radio channel model, our proposed channel tracking framework is able to achieve near-optimum data rates

    Channel Estimation and Hybrid Precoding for Distributed Phased Arrays Based MIMO Wireless Communications

    Full text link
    Distributed phased arrays based multiple-input multiple-output (DPA-MIMO) is a newly introduced architecture that enables both spatial multiplexing and beamforming while facilitating highly reconfigurable hardware implementation in millimeter-wave (mmWave) frequency bands. With a DPA-MIMO system, we focus on channel state information (CSI) acquisition and hybrid precoding. As benefited from a coordinated and open-loop pilot beam pattern design, all the sub-arrays can perform channel sounding with less training overhead compared with the traditional orthogonal operation of each sub-array. Furthermore, two sparse channel recovery algorithms, known as joint orthogonal matching pursuit (JOMP) and joint sparse Bayesian learning with â„“2\ell_2 reweighting (JSBL-â„“2\ell_2), are proposed to exploit the hidden structured sparsity in the beam-domain channel vector. Finally, successive interference cancellation (SIC) based hybrid precoding through sub-array grouping is illustrated for the DPA-MIMO system, which decomposes the joint sub-array RF beamformer design into an interactive per-sub-array-group handle. Simulation results show that the proposed two channel estimators fully take advantage of the partial coupling characteristic of DPA-MIMO channels to perform channel recovery, and the proposed hybrid precoding algorithm is suitable for such array-of-sub-arrays architecture with satisfactory performance and low complexity.Comment: accepted by IEEE Transactions on Vehicular Technolog

    Beamforming Algorithm for Multiuser Wideband Millimeter-Wave Systems with Hybrid and Subarray Architectures

    Full text link
    We present a beamforming algorithm for multiuser wideband millimeter wave (mmWave) communication systems where one access point uses hybrid analog/digital beamforming while multiple user stations have phased-arrays with a single RF chain. The algorithm operates in a more general mode than others available in literature and has lower computational complexity and training overhead. Throughout the paper, we describe: i) the construction of novel beamformer sets (codebooks) with wide sector beams and narrow beams based on the orthogonality property of beamformer vectors, ii) a beamforming algorithm that uses training transmissions over the codebooks to select the beamformers that maximize the received sumpower along the bandwidth, and iii) a numerical validation of the algorithm in standard indoor scenarios for mmWave WLANs using channels obtained with both statistical and raytracing models. Our algorithm is designed to serve multiple users in a wideband OFDM system and does not require channel matrix knowledge or a particular channel structure. Moreover, we incorporate antenna-specific aspects in the analysis, such as antenna coupling, element radiation pattern, and beam squint. Although there are no other solutions for the general system studied in this paper, we characterize the algorithm's achievable rate and show that it attains more than 70 percent of the spectral efficiency (between 1.5 and 3 dB SNR loss) with respect to ideal fully-digital beamforming in the analyzed scenarios. We also show that our algorithm has similar sum-rate performance as other solutions in the literature for some special cases, while providing significantly lower computational complexity (with a linear dependence on the number of antennas) and shorter training overhead

    Hybrid Precoding Based on Non-Uniform Quantization Codebook to Reduce Feedback Overhead in Millimeter Wave MIMO Systems

    Full text link
    In this paper, we focus on the design of the hybrid analog/digital precoding in millimeter wave multiple-input multiple-output (MIMO) systems. To reduce the feedback overhead, we propose two non-uniform quantization (NUQ) codebook based hybrid precoding schemes for two main hybrid precoding implementations, i.e., the full-connected structure and the sub-connected structure. Specifically, we firstly group the angles of the arrive/departure (AOAs/AODs) of the scattering paths into several spatial lobes by exploiting the sparseness property of the millimeter wave in the angular domain, which divides the total angular domain into effective spatial lobes' coverage angles and ineffective coverage angles. Then, we map the quantization bits non-uniformly to different coverage angles and construct NUQ codebooks, where high numbers of quantization bits are employed for the effective coverage angles to quantize AoAs/AoDs and zero quantization bit is employed for ineffective coverage angles. Finally, two low-complexity hybrid analog/digital precoding schemes are proposed based on NUQ codebooks. Simulation results demonstrate that, the proposed two NUQ codebook based hybrid precoding schemes achieve near-optimal spectral efficiencies and show the superiority in reducing the feedback overhead compared with the uniform quantization (UQ) codebook based works, e.g., at least 12.5% feedback overhead could be reduced for a system with 144/36 transmitting/receiving antennas.Comment: 29 pages, 12 figure
    • …
    corecore