60 research outputs found

    Performance Evaluation of Hybrid Precoder Design for Multi-User Massive MIMO Systems with Low-Resolution ADCs/DACs

    Get PDF
    This paper presents a comprehensive analysis and design of a hybrid precoding system tailored for mmWave multi-user massive MIMO systems in both downlink and uplink scenarios. The proposed system employs a two-stage precoding approach, incorporating UQ and NUQ techniques, along with low-resolution DACs in downlink and ADCs in uplink to address hardware limitations. The system considers Zero Forcing and Minimum Mean Square Error algorithms as digital precoding methods for the uplink scenario, while exploring the impact of different DAC resolutions on system performance. Extensive simulations reveal that the proposed system surpasses conventional analog beamforming methods, particularly in multi-user scenarios involving inter-user interference. In downlink, the system demonstrates a trade-off between SE and EE, achieving higher Energy Efficiency with NUQ. In uplink, NUQ and UQ converters exhibit similar performance trends regardless of the chosen combiner algorithm. The proposed system attains enhanced Spectral and Energy Efficiency while maintaining reduced complexity and overhead. The study significantly contributes to the advancement of efficient and effective mmWave multi-user massive MIMO systems by providing a thorough analysis of various quantization schemes and precoding techniques. The findings of this research are expected to aid in the optimization of 5G and beyond technologies, particularly in high-density deployment scenarios

    Towards the Assessment of Realistic Hybrid Precoding in Millimeter Wave MIMO Systems with Hardware Impairments

    Get PDF
    Funding Information: This work was supported by the University of Hertfordshire's 5‐year Vice Chancellor's Research Fellowship and by the National Research Fund, Luxembourg, under the projects ECLECTIC and 5G‐SKY. Publisher Copyright: © 2021 The Authors. IET Communications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and TechnologyHybrid processing in millimeter wave (mmWave) communication has been proposed as a solution to reduce the cost and energy consumption by reducing the number of radio-frequency (RF) chains. However, the impact of the inevitable residual transceiver hardware impairments (RTHIs), including the residual additive transceiver hardware impairments (RATHIs) and the amplified thermal noise (ATN), has not been sufficiently studied in mmWave hybrid processing. In this work, the hybrid precoder and combiner are designed, which include both digital and analog processing by taking into account the RATHIs and the ATN. In particular, a thorough study is provided to shed light on the degradation of the spectral efficiency (SE) of the practical system. The outcomes show the steady degradation of the performance by the ATN across all SNR values, which becomes increasingly critical for higher values of its variance. Furthermore, it is shown that RATHIs result in degradation of the system only in the high SNR regime. Hence, their impact in mmWave system operating at low SNRs might be negligible. Moreover, an increase concerning the number of streams differentiates the impact between the transmit and receive RATHIs with the latter having a more severe effect.Peer reviewe

    Reducing Precoder/Channel Mismatch and Enhancing Secrecy in Practical MIMO Systems Using Artificial Signals

    Get PDF
    Practical multiple-input-multiple-output (MIMO) systems depend on a predefined set of precoders to provide spatial multiplexing gain. This limitation on the flexibility of the precoders affects the overall performance. Here, we propose a transmission scheme that can reduce the effect of mismatch between users' channels and precoders. The scheme uses the channel knowledge to generate an artificial signal, which realigns the predefined precoder to the actual channel. Moreover, the scheme can provide an additional level of secrecy for the communication link. The performance of the proposed scheme is evaluated using bit-error rate (BER), error vector magnitude (EVM), and secrecy capacity. The results show a significant improvement for the legitimate user, along with a degradation for the eavesdropper.Comment: 4 pages, 5 figures. Accepted for publication in IEEE Communications Letter

    Multi-layer Utilization of Beamforming in Millimeter Wave MIMO Systems

    Get PDF
    mmWave frequencies ranging between (30-300GHz) have been considered the perfect solution to the scarcity of bandwidth in the traditional sub-6GHz band and to the ever increasing demand of many emerging applications in today\u27s era. 5G and beyond standards are all considering the mmWave as an essential part of there networks. Beamforming is one of the most important enabling technologies for the mmWave to compensate for the huge propagation lose of these frequencies compared to the sub-6GHz frequencies and to ensure better spatial and spectral utilization of the mmWave channel space. In this work, we tried to develop different techniques to improve the performance of the systems that use mmWave. In the physical layer, we suggested several hybrid beamforming architectures that both are relatively simple and spectrally efficient by achieving fully digital like spectral efficiency (bits/sec/Hz). For the mobility management, we derived the expected degradation that can affect the performance of a special type of beamforming that is called the Random Beamforming (RBF) and optimized the tunable parameters for such systems when working in different environments. Finally, in the networking layer, we first studied the effect of using mmWave frequencies on the routing performance comparing to the performance achieved when using sub-6 GHz frequencies. Then we developed a novel opportunistic routing protocol for Mobile Ad-Hoc Networks (MANET) that uses a modified version of the Random Beamforming (RBF) to achieve better end to end performance and to reduce the overall delay in delivering data from transmitting nodes to the intended receiving nodes. From all these designs and studies, we conclude that mmWave frequencies and their enabling technologies (i.e. Beamforming, massive MIMO, ...etc.) are indeed the future of wireless communicatons in a high demanding world of Internet of Things (IoT), Augmented Reality (AR), Virtual Reality (VR), and self driving cars
    corecore