6,309 research outputs found

    Progress in AI Planning Research and Applications

    Get PDF
    Planning has made significant progress since its inception in the 1970s, in terms both of the efficiency and sophistication of its algorithms and representations and its potential for application to real problems. In this paper we sketch the foundations of planning as a sub-field of Artificial Intelligence and the history of its development over the past three decades. Then some of the recent achievements within the field are discussed and provided some experimental data demonstrating the progress that has been made in the application of general planners to realistic and complex problems. The paper concludes by identifying some of the open issues that remain as important challenges for future research in planning

    On Guiding Search in HTN Temporal Planning with non Temporal Heuristics

    Full text link
    The Hierarchical Task Network (HTN) formalism is used to express a wide variety of planning problems as task decompositions, and many techniques have been proposed to solve them. However, few works have been done on temporal HTN. This is partly due to the lack of a formal and consensual definition of what a temporal hierarchical planning problem is as well as the difficulty to develop heuristics in this context. In response to these inconveniences, we propose in this paper a new general POCL (Partial Order Causal Link) approach to represent and solve a temporal HTN problem by using existing heuristics developed to solve non temporal problems. We show experimentally that this approach is performant and can outperform the existing ones

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Fast Scheduling of Robot Teams Performing Tasks With Temporospatial Constraints

    Get PDF
    The application of robotics to traditionally manual manufacturing processes requires careful coordination between human and robotic agents in order to support safe and efficient coordinated work. Tasks must be allocated to agents and sequenced according to temporal and spatial constraints. Also, systems must be capable of responding on-the-fly to disturbances and people working in close physical proximity to robots. In this paper, we present a centralized algorithm, named 'Tercio,' that handles tightly intercoupled temporal and spatial constraints. Our key innovation is a fast, satisficing multi-agent task sequencer inspired by real-time processor scheduling techniques and adapted to leverage a hierarchical problem structure. We use this sequencer in conjunction with a mixed-integer linear program solver and empirically demonstrate the ability to generate near-optimal schedules for real-world problems an order of magnitude larger than those reported in prior art. Finally, we demonstrate the use of our algorithm in a multirobot hardware testbed

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    The GRT Planning System: Backward Heuristic Construction in Forward State-Space Planning

    Full text link
    This paper presents GRT, a domain-independent heuristic planning system for STRIPS worlds. GRT solves problems in two phases. In the pre-processing phase, it estimates the distance between each fact and the goals of the problem, in a backward direction. Then, in the search phase, these estimates are used in order to further estimate the distance between each intermediate state and the goals, guiding so the search process in a forward direction and on a best-first basis. The paper presents the benefits from the adoption of opposite directions between the preprocessing and the search phases, discusses some difficulties that arise in the pre-processing phase and introduces techniques to cope with them. Moreover, it presents several methods of improving the efficiency of the heuristic, by enriching the representation and by reducing the size of the problem. Finally, a method of overcoming local optimal states, based on domain axioms, is proposed. According to it, difficult problems are decomposed into easier sub-problems that have to be solved sequentially. The performance results from various domains, including those of the recent planning competitions, show that GRT is among the fastest planners
    • ā€¦
    corecore