742 research outputs found

    Metaheuristic Optimization of Power and Energy Systems: Underlying Principles and Main Issues of the `Rush to Heuristics'

    Get PDF
    In the power and energy systems area, a progressive increase of literature contributions that contain applications of metaheuristic algorithms is occurring. In many cases, these applications are merely aimed at proposing the testing of an existing metaheuristic algorithm on a specific problem, claiming that the proposed method is better than other methods that are based on weak comparisons. This ‘rush to heuristics’ does not happen in the evolutionary computation domain, where the rules for setting up rigorous comparisons are stricter but are typical of the domains of application of the metaheuristics. This paper considers the applications to power and energy systems and aims at providing a comprehensive view of the main issues that concern the use of metaheuristics for global optimization problems. A set of underlying principles that characterize the metaheuristic algorithms is presented. The customization of metaheuristic algorithms to fit the constraints of specific problems is discussed. Some weaknesses and pitfalls that are found in literature contributions are identified, and specific guidelines are provided regarding how to prepare sound contributions on the application of metaheuristic algorithms to specific problems

    Metaheuristics for online drive train efficiency optimization in electric vehicles

    Get PDF
    Utilization of electric vehicles provides a solution to several challenges in today’s individual mobility. However, ensuring maximum efficient operation of electric vehicles is required in order to overcome their greatest weakness: the limited range. Even though the overall efficiency is already high, incorporating DC/DC converter into the electric drivetrain improves the efficiency level further. This inclusion enables the dynamic optimization of the intermediate voltage level subject to the current driving demand (operating point) of the drivetrain. Moreover, the overall drivetrain efficiency depends on the setup of other drivetrain components’ electric parameters. Solving this complex problem for different drivetrain parameter setups subject to the current driving demand needs considerable computing time for conventional solvers and cannot be delivered in real-time. Therefore, basic metaheuristics are identified and applied in order to assure the optimization process during driving. In order to compare the performance of metaheuristics for this task, we adjust and compare the performance of different basic metaheuristics (i.e. Monte-Carlo, Evolutionary Algorithms, Simulated Annealing and Particle Swarm Optimization). The results are statistically analyzed and based on a developed simulation model of an electric drivetrain. By applying the bestperforming metaheuristic, the efficiency of the drivetrain could be improved by up to 30% compared to an electric vehicle without the DC/DC- converter. The difference between computing times vary between 30 minutes (for the Exhaustive Search Algorithm) to about 0.2 seconds (Particle Swarm) per operating point. It is shown, that the Particle Swarm Optimization as well as the Evolutionary Algorithm procedures are the best-performing methods on this optimization problem. All in all, the results support the idea that online efficiency optimization in electric vehicles is possible with regard to computing time and success probability

    Solar array fed synchronous reluctance motor driven water pump : an improved performance under partial shading conditions

    Get PDF
    An improved performance of a photovoltaic (PV) pumping system employing a synchronous reluctance motor (SynRM) under partial shading conditions is proposed. The system does not include the dc-dc converter that is predominantly being utilized for maximizing the output power of the PV array. In addition, storage batteries are also not contained. A conventional inverter connected directly to the PV array is used to drive the SynRM. Further, a control strategy is proposed to drive the inverter so that the maximum output power of the PV array is achieved while the SynRM is working at the maximum torque per Ampere condition. Consequently, this results in an improved system efficiency and cost. Moreover, two maximum power point tracking (MPPT) techniques are compared under uniform and partial shadow irradiation conditions. The first MPPT algorithm is based on the conventional perturbation and observation (P&O) method and the second one uses a differential evolution (DE) optimization technique. It is found that the DE optimization method leads to a higher PV output power than using the P&O method under the partial shadow condition. Hence, the pump flow rate is much higher. However, under a uniform irradiation level, the PV system provides the available maximum power using both MPPT techniques. The experimental measurements are obtained to validate the theoretical work

    Fractional Order Load-Frequency Control of Interconnected Power Systems Using Chaotic Multi-objective Optimization

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Fractional order proportional-integral-derivative (FOPID) controllers are designed for load frequency control (LFC) of two interconnected power systems. Conflicting time domain design objectives are considered in a multi objective optimization (MOO) based design framework to design the gains and the fractional differ-integral orders of the FOPID controllers in the two areas. Here, we explore the effect of augmenting two different chaotic maps along with the uniform random number generator (RNG) in the popular MOO algorithm - the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Different measures of quality for MOO e.g. hypervolume indicator, moment of inertia based diversity metric, total Pareto spread, spacing metric are adopted to select the best set of controller parameters from multiple runs of all the NSGA-II variants (i.e. nominal and chaotic versions). The chaotic versions of the NSGA-II algorithm are compared with the standard NSGA-II in terms of solution quality and computational time. In addition, the Pareto optimal fronts showing the trade-off between the two conflicting time domain design objectives are compared to show the advantage of using the FOPID controller over that with simple PID controller. The nature of fast/slow and high/low noise amplification effects of the FOPID structure or the four quadrant operation in the two inter-connected areas of the power system is also explored. A fuzzy logic based method has been adopted next to select the best compromise solution from the best Pareto fronts corresponding to each MOO comparison criteria. The time domain system responses are shown for the fuzzy best compromise solutions under nominal operating conditions. Comparative analysis on the merits and de-merits of each controller structure is reported then. A robustness analysis is also done for the PID and the FOPID controllers

    Multi-Criteria Performance Evaluation and Control in Power and Energy Systems

    Get PDF
    The role of intuition and human preferences are often overlooked in autonomous control of power and energy systems. However, the growing operational diversity of many systems such as microgrids, electric/hybrid-electric vehicles and maritime vessels has created a need for more flexible control and optimization methods. In order to develop such flexible control methods, the role of human decision makers and their desired performance metrics must be studied in power and energy systems. This dissertation investigates the concept of multi-criteria decision making as a gateway to integrate human decision makers and their opinions into complex mathematical control laws. There are two major steps this research takes to algorithmically integrate human preferences into control environments: MetaMetric (MM) performance benchmark: considering the interrelations of mathematical and psychological convergence, and the potential conflict of opinion between the control designer and end-user, a novel holistic performance benchmark, denoted as MM, is developed to evaluate control performance in real-time. MM uses sensor measurements and implicit human opinions to construct a unique criterion that benchmarks the system\u27s performance characteristics. MM decision support system (DSS): the concept of MM is incorporated into multi-objective evolutionary optimization algorithms as their DSS. The DSS\u27s role is to guide and sort the optimization decisions such that they reflect the best outcome desired by the human decision-maker and mathematical considerations. A diverse set of case studies including a ship power system, a terrestrial power system, and a vehicular traction system are used to validate the approaches proposed in this work. Additionally, the MM DSS is designed in a modular way such that it is not specific to any underlying evolutionary optimization algorithm

    A review of optimal operation of microgrids

    Get PDF
    The term microgrid refers to small-scale power grid that can operate autonomously or in concurrence with the area’s main electrical grid. The intermittent characteristic of DGs which defies the power quality and voltage manifests the requirement for new planning and operation approaches for microgrids. Consequently, conventional optimization methods in new power systems have been critically biased all through the previous decade. One of the main technological and inexpensive tools in this regard is the optimal generation scheduling of microgrid. As a primary optimization tool in the planning and operation fields, optimal operation has an undeniable part in the power system. This paper reviews and evaluates the optimal operation approaches mostly related to microgrids. In this work, the foremost optimal generation scheduling approaches are compared in terms of their objective functions, techniques and constraints. To conclude, a few fundamental challenges occurring from the latest optimal generation scheduling techniques in microgrids are addressed

    Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

    Get PDF
    Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Reactive power optimization with SVC & TCSC using genetic algorithm

    Get PDF
    In this paper Genetic Algorithm (GA) is used as an evolutionary tecthniques for the optimal placement of flexible AC transmission systems (FACTS) devices in an interconnected power system. Here two types of FACTS devices has been discussed nemely, Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) for the economic operation and to reduce the transmission loss. Reactively loading of the system is taken from base to 200% of base loading and the system performance is observed without and with FACTS devices. Optimal placement of FACTS devices in the system is determined by calculating active and reactive power flow in lines. FACTS devices along with reactive generation of generators and transformer tap setting are used for the power transfer capacity using GA. The proposed approach is applied on IEEE 14 and IEEE 30-bus test systems. Finally the effectiveness of the proposed GA based method of placement of FACTS devices is established by comparing the results with another standard method of optimization like Particle Swarm Optimization (PSO) technique
    corecore