109,272 research outputs found

    Logical Learning Through a Hybrid Neural Network with Auxiliary Inputs

    Full text link
    The human reasoning process is seldom a one-way process from an input leading to an output. Instead, it often involves a systematic deduction by ruling out other possible outcomes as a self-checking mechanism. In this paper, we describe the design of a hybrid neural network for logical learning that is similar to the human reasoning through the introduction of an auxiliary input, namely the indicators, that act as the hints to suggest logical outcomes. We generate these indicators by digging into the hidden information buried underneath the original training data for direct or indirect suggestions. We used the MNIST data to demonstrate the design and use of these indicators in a convolutional neural network. We trained a series of such hybrid neural networks with variations of the indicators. Our results show that these hybrid neural networks are very robust in generating logical outcomes with inherently higher prediction accuracy than the direct use of the original input and output in apparent models. Such improved predictability with reassured logical confidence is obtained through the exhaustion of all possible indicators to rule out all illogical outcomes, which is not available in the apparent models. Our logical learning process can effectively cope with the unknown unknowns using a full exploitation of all existing knowledge available for learning. The design and implementation of the hints, namely the indicators, become an essential part of artificial intelligence for logical learning. We also introduce an ongoing application setup for this hybrid neural network in an autonomous grasping robot, namely as_DeepClaw, aiming at learning an optimized grasping pose through logical learning.Comment: 11 pages, 9 figures, 4 table

    Deep neural learning based distributed predictive control for offshore wind farm using high fidelity LES data

    Get PDF
    The paper explores the deep neural learning (DNL) based predictive control approach for offshore wind farm using high fidelity large eddy simulations (LES) data. The DNL architecture is defined by combining the Long Short-Term Memory (LSTM) units with Convolutional Neural Networks (CNN) for feature extraction and prediction of the offshore wind farm. This hybrid CNN-LSTM model is developed based on the dynamic models of the wind farm and wind turbines as well as higher-fidelity LES data. Then, distributed and decentralized model predictive control (MPC) methods are developed based on the hybrid model for maximizing the wind farm power generation and minimizing the usage of the control commands. Extensive simulations based on a two-turbine and a nine-turbine wind farm cases demonstrate the high prediction accuracy (97% or more) of the trained CNN-LSTM models. They also show that the distributed MPC can achieve up to 38% increase in power generation at farm scale than the decentralized MPC. The computational time of the distributed MPC is around 0.7s at each time step, which is sufficiently fast as a real-time control solution to wind farm operations

    Bayesian Neural Tree Models for Nonparametric Regression

    Full text link
    Frequentist and Bayesian methods differ in many aspects, but share some basic optimal properties. In real-life classification and regression problems, situations exist in which a model based on one of the methods is preferable based on some subjective criterion. Nonparametric classification and regression techniques, such as decision trees and neural networks, have frequentist (classification and regression trees (CART) and artificial neural networks) as well as Bayesian (Bayesian CART and Bayesian neural networks) approaches to learning from data. In this work, we present two hybrid models combining the Bayesian and frequentist versions of CART and neural networks, which we call the Bayesian neural tree (BNT) models. Both models exploit the architecture of decision trees and have lesser number of parameters to tune than advanced neural networks. Such models can simultaneously perform feature selection and prediction, are highly flexible, and generalize well in settings with a limited number of training observations. We study the consistency of the proposed models, and derive the optimal value of an important model parameter. We also provide illustrative examples using a wide variety of real-life regression data sets

    Hybrid Physics and Deep Learning Model for Interpretable Vehicle State Prediction

    Full text link
    Physical motion models offer interpretable predictions for the motion of vehicles. However, some model parameters, such as those related to aero- and hydrodynamics, are expensive to measure and are often only roughly approximated reducing prediction accuracy. Recurrent neural networks achieve high prediction accuracy at low cost, as they can use cheap measurements collected during routine operation of the vehicle, but their results are hard to interpret. To precisely predict vehicle states without expensive measurements of physical parameters, we propose a hybrid approach combining deep learning and physical motion models including a novel two-phase training procedure. We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model, which limits the uncertainty introduced by the neural network to a known quantity. We have evaluated our approach for the use case of ship and quadcopter motion. The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches

    Gibbs-Duhem-Informed Neural Networks for Binary Activity Coefficient Prediction

    Full text link
    We propose Gibbs-Duhem-informed neural networks for the prediction of binary activity coefficients at varying compositions. That is, we include the Gibbs-Duhem equation explicitly in the loss function for training neural networks, which is straightforward in standard machine learning (ML) frameworks enabling automatic differentiation. In contrast to recent hybrid ML approaches, our approach does not rely on embedding a specific thermodynamic model inside the neural network and corresponding prediction limitations. Rather, Gibbs-Duhem consistency serves as regularization, with the flexibility of ML models being preserved. Our results show increased thermodynamic consistency and generalization capabilities for activity coefficient predictions by Gibbs-Duhem-informed graph neural networks and matrix completion methods. We also find that the model architecture, particularly the activation function, can have a strong influence on the prediction quality. The approach can be easily extended to account for other thermodynamic consistency conditions

    A Comparison Between a Long Short-Term Memory Network Hybrid Model and an ARIMA Hybrid Model for Stock Return Predictability

    Get PDF
    This thesis explores the applicability of neural networks in stock return forecasts by designing a hybrid LSTM (long short-term memory) network and compares its forecasting ability with both a static LSTM network and an ARIMA hybrid model. The S&P100 stock set is employed as the prediction sample. The hybrid models use the neural network approach and frequentist method respectively to estimate Fama-French risk factors, then predict stock returns based on factor estimations that benefit from the prediction ability and computational power of the LSTM network and the ARIMA model as well as the Fama-French model’s explanatory power of returns. Better factor predictions are made by the LSTM network with a 31% reduction of Mean Squared Error (MSE) and broader ranges of estimation than the ARIMA model. Hybrid models demonstrate a better fit, resulting in more accurate predictions compared to the static LSTM network by an average of 4.6% (LSTM-FF) and 3.1% (ARIMA-FF). However, I find that the slight outperformance of the LSTM-FF hybrid model over the ARIMA-FF hybrid model is not statistically significant

    Protein Inter-Residue Distance Prediction Using Residual and Capsule Networks

    Get PDF
    The protein folding problem, also known as protein structure prediction, is the task of building three-dimensional protein models given their one-dimensional amino acid sequence. New methods that have been successfully used in the most recent CASP challenge have demonstrated that predicting a protein\u27s inter-residue distances is key to solving this problem. Various deep learning algorithms including fully convolutional neural networks and residual networks have been developed to solve the distance prediction problem. In this work, we develop a hybrid method based on residual networks and capsule networks. We demonstrate that our method can predict distances more accurately than the algorithms used in the state-of-the-art methods. Using a standard dataset of 3420 training proteins and an independent dataset of 150 test proteins, we show that our method can predict distances 51.06% more accurately than a standard residual network method, when accuracy of all long-range distances are evaluated using mean absolute error. To further validate our results, we demonstrate that three-dimensional models built using the distances predicted by our method are more accurate than models built using the distances predicted by residual networks. Overall, our results, for the first time, highlight the potential of capsule-residual hybrid networks for solving the protein inter-residue distance prediction problem

    A hybrid quantum-classical fusion neural network to improve protein-ligand binding affinity predictions for drug discovery

    Full text link
    The field of drug discovery hinges on the accurate prediction of binding affinity between prospective drug molecules and target proteins, especially when such proteins directly influence disease progression. However, estimating binding affinity demands significant financial and computational resources. While state-of-the-art methodologies employ classical machine learning (ML) techniques, emerging hybrid quantum machine learning (QML) models have shown promise for enhanced performance, owing to their inherent parallelism and capacity to manage exponential increases in data dimensionality. Despite these advances, existing models encounter issues related to convergence stability and prediction accuracy. This paper introduces a novel hybrid quantum-classical deep learning model tailored for binding affinity prediction in drug discovery. Specifically, the proposed model synergistically integrates 3D and spatial graph convolutional neural networks within an optimized quantum architecture. Simulation results demonstrate a 6% improvement in prediction accuracy relative to existing classical models, as well as a significantly more stable convergence performance compared to previous classical approaches.Comment: 5 pages, 3 figure
    • …
    corecore