250 research outputs found

    Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map

    Get PDF
    This paper outlines the development of a multi-satellite precipitation estimation methodology that draws on techniques from machine learning and morphology to produce high-resolution, short-duration rainfall estimates in an automated fashion. First, cloud systems are identified from geostationary infrared imagery using morphology based watershed segmentation algorithm. Second, a novel pattern recognition technique, growing hierarchical self-organizing map (GHSOM), is used to classify clouds into a number of clusters with hierarchical architecture. Finally, each cloud cluster is associated with co-registered passive microwave rainfall observations through a cumulative histogram matching approach. The network was initially trained using remotely sensed geostationary infrared satellite imagery and hourly ground-radar data in lieu of a dense constellation of polar-orbiting spacecraft such as the proposed global precipitation measurement (GPM) mission. Ground-radar and gauge rainfall measurements were used to evaluate this technique for both warm (June 2004) and cold seasons (December 2004-February 2005) at various temporal (daily and monthly) and spatial (0.04 and 0.25) scales. Significant improvements of estimation accuracy are found classifying the clouds into hierarchical sub-layers rather than a single layer. Furthermore, 2-year (2003-2004) satellite rainfall estimates generated by the current algorithm were compared with gauge-corrected Stage IV radar rainfall at various time scales over continental United States. This study demonstrates the usefulness of the watershed segmentation and the GHSOM in satellite-based rainfall estimations

    Variational Downscaling, Fusion and Assimilation of Hydrometeorological States via Regularized Estimation

    Full text link
    Improved estimation of hydrometeorological states from down-sampled observations and background model forecasts in a noisy environment, has been a subject of growing research in the past decades. Here, we introduce a unified framework that ties together the problems of downscaling, data fusion and data assimilation as ill-posed inverse problems. This framework seeks solutions beyond the classic least squares estimation paradigms by imposing proper regularization, which are constraints consistent with the degree of smoothness and probabilistic structure of the underlying state. We review relevant regularization methods in derivative space and extend classic formulations of the aforementioned problems with particular emphasis on hydrologic and atmospheric applications. Informed by the statistical characteristics of the state variable of interest, the central results of the paper suggest that proper regularization can lead to a more accurate and stable recovery of the true state and hence more skillful forecasts. In particular, using the Tikhonov and Huber regularization in the derivative space, the promise of the proposed framework is demonstrated in static downscaling and fusion of synthetic multi-sensor precipitation data, while a data assimilation numerical experiment is presented using the heat equation in a variational setting

    MSWEP : 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data

    Get PDF
    Current global precipitation (P) datasets do not take full advantage of the complementary nature of satellite and reanalysis data. Here, we present Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 1.1, a global P dataset for the period 1979-2015 with a 3hourly temporal and 0.25 degrees ffi spatial resolution, specifically designed for hydrological modeling. The design philosophy of MSWEP was to optimally merge the highest quality P data sources available as a function of timescale and location. The long-term mean of MSWEP was based on the CHPclim dataset but replaced with more accurate regional datasets where available. A correction for gauge under-catch and orographic effects was introduced by inferring catchment-average P from streamflow (Q) observations at 13 762 stations across the globe. The temporal variability of MSWEP was determined by weighted averaging of P anomalies from seven datasets; two based solely on interpolation of gauge observations (CPC Unified and GPCC), three on satellite remote sensing (CMORPH, GSMaP-MVK, and TMPA 3B42RT), and two on atmospheric model reanalysis (ERA-Interim and JRA-55). For each grid cell, the weight assigned to the gauge-based estimates was calculated from the gauge network density, while the weights assigned to the satellite-and reanalysis-based estimates were calculated from their comparative performance at the surrounding gauges. The quality of MSWEP was compared against four state-of-the-art gauge-adjusted P datasets (WFDEI-CRU, GPCP-1DD, TMPA 3B42, and CPC Unified) using independent P data from 125 FLUXNET tower stations around the globe. MSWEP obtained the highest daily correlation coefficient (R) among the five P datasets for 60.0% of the stations and a median R of 0.67 vs. 0.44-0.59 for the other datasets. We further evaluated the performance of MSWEP using hydrological modeling for 9011 catchments (< 50 000 km(2)) across the globe. Specifically, we calibrated the simple conceptual hydrological model HBV (Hydrologiska Byrans Vattenbalansavdelning) against daily Q observations with P from each of the different datasets. For the 1058 sparsely gauged catchments, representative of 83.9% of the global land surface (excluding Antarctica), MSWEP obtained a median calibration NSE of 0.52 vs. 0.29-0.39 for the other P datasets. MSWEP is available via http://www.gloh2o.org
    • …
    corecore