577 research outputs found

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p

    Techniques intelligentes pour la gestion de la cohérence des Big data dans le cloud

    Get PDF
    Cette thèse aborde le problème de cohérence des données de Bigdata dans le cloud. En effet, nos recherches portent sur l’étude de différentes approches de cohérence adaptative dans le cloud et la proposition d’une nouvelle approche pour l’environnement Edge computing. La gestion de la cohérence a des conséquences majeures pour les systèmes de stockage distribués. Les modèles de cohérence forte nécessitent une synchronisation après chaque mise à jour, ce qui affecte considérablement les performances et la disponibilité du système. À l’inverse, les modèles à faible cohérence offrent de meilleures performances ainsi qu’une meilleure disponibilité des données. Cependant, ces derniers modèles peuvent tolérer trop d’incohérences temporaires sous certaines conditions. Par conséquent, une stratégie de cohérence adaptative est nécessaire pour ajuster, pendant l’exécution, le niveau de cohérence en fonction de la criticité des requêtes ou des données. Cette thèse apporte deux contributions. Dans la première contribution, une analyse comparative des approches de cohérence adaptative existantes est effectuée selon un ensemble de critères de comparaison définis. Ce type de synthèse fournit à l’utilisateur/chercheur une analyse comparative des performances des approches existantes. De plus, il clarifie la pertinence de ces approches pour les systèmes cloud candidats. Dans la seconde contribution, nous proposons MinidoteACE, un nouveau système adaptatif de cohérence qui est une version améliorée de Minidote, un système de cohérence causale pour les applications Edge. Contrairement à Minidote qui ne fournit que la cohérence causale, notre modèle permet aux applications d’exécuter également des requêtes avec des garanties de cohérence plus fortes. Des évaluations expérimentales montrent que le débit ne diminue que de 3,5 % à 10 % lors du remplacement d’une opération causale par une opération forte. Cependant, la latence de mise à jour augmente considérablement pour les opérations fortes jusqu’à trois fois pour une charge de travail où le taux des opérations de mise à jour est de 25 %

    Design and implementation of a multi-agent opportunistic grid computing platform

    Get PDF
    Opportunistic Grid Computing involves joining idle computing resources in enterprises into a converged high performance commodity infrastructure. The research described in this dissertation investigates the viability of public resource computing in offering a plethora of possibilities through seamless access to shared compute and storage resources. The research proposes and conceptualizes the Multi-Agent Opportunistic Grid (MAOG) solution in an Information and Communication Technologies for Development (ICT4D) initiative to address some limitations prevalent in traditional distributed system implementations. Proof-of-concept software components based on JADE (Java Agent Development Framework) validated Multi-Agent Systems (MAS) as an important tool for provisioning of Opportunistic Grid Computing platforms. Exploration of agent technologies within the research context identified two key components which improve access to extended computer capabilities. The first component is a Mobile Agent (MA) compute component in which a group of agents interact to pool shared processor cycles. The compute component integrates dynamic resource identification and allocation strategies by incorporating the Contract Net Protocol (CNP) and rule based reasoning concepts. The second service is a MAS based storage component realized through disk mirroring and Google file-system’s chunking with atomic append storage techniques. This research provides a candidate Opportunistic Grid Computing platform design and implementation through the use of MAS. Experiments conducted validated the design and implementation of the compute and storage services. From results, support for processing user applications; resource identification and allocation; and rule based reasoning validated the MA compute component. A MAS based file-system that implements chunking optimizations was considered to be optimum based on evaluations. The findings from the undertaken experiments also validated the functional adequacy of the implementation, and show the suitability of MAS for provisioning of robust, autonomous, and intelligent platforms. The context of this research, ICT4D, provides a solution to optimizing and increasing the utilization of computing resources that are usually idle in these contexts

    Initial File-Placement In Data Grid Environment Using Game Theory And Fictitious Play

    Get PDF
    Data allocation comprises data placement or migration. It is one of the main considerations in the design of a distributed data sharing system. Peruntukan data merangkumi peletakan atau migrasi data. Ini merupakan salah satu pertimbangan utama dalam reka bentuk sistem perkongsian data teragih

    The Architecture of an Autonomic, Resource-Aware, Workstation-Based Distributed Database System

    Get PDF
    Distributed software systems that are designed to run over workstation machines within organisations are termed workstation-based. Workstation-based systems are characterised by dynamically changing sets of machines that are used primarily for other, user-centric tasks. They must be able to adapt to and utilize spare capacity when and where it is available, and ensure that the non-availability of an individual machine does not affect the availability of the system. This thesis focuses on the requirements and design of a workstation-based database system, which is motivated by an analysis of existing database architectures that are typically run over static, specially provisioned sets of machines. A typical clustered database system -- one that is run over a number of specially provisioned machines -- executes queries interactively, returning a synchronous response to applications, with its data made durable and resilient to the failure of machines. There are no existing workstation-based databases. Furthermore, other workstation-based systems do not attempt to achieve the requirements of interactivity and durability, because they are typically used to execute asynchronous batch processing jobs that tolerate data loss -- results can be re-computed. These systems use external servers to store the final results of computations rather than workstation machines. This thesis describes the design and implementation of a workstation-based database system and investigates its viability by evaluating its performance against existing clustered database systems and testing its availability during machine failures.Comment: Ph.D. Thesi

    Web Replica Hosting Systems

    Get PDF

    Cyber-Mediation: Computer-Mediated Communications Medium Massaging the Message

    Get PDF

    Design and implementation of a multi-agent opportunistic grid computing platform

    Get PDF
    Opportunistic Grid Computing involves joining idle computing resources in enterprises into a converged high performance commodity infrastructure. The research described in this dissertation investigates the viability of public resource computing in offering a plethora of possibilities through seamless access to shared compute and storage resources. The research proposes and conceptualizes the Multi-Agent Opportunistic Grid (MAOG) solution in an Information and Communication Technologies for Development (ICT4D) initiative to address some limitations prevalent in traditional distributed system implementations. Proof-of-concept software components based on JADE (Java Agent Development Framework) validated Multi-Agent Systems (MAS) as an important tool for provisioning of Opportunistic Grid Computing platforms. Exploration of agent technologies within the research context identified two key components which improve access to extended computer capabilities. The first component is a Mobile Agent (MA) compute component in which a group of agents interact to pool shared processor cycles. The compute component integrates dynamic resource identification and allocation strategies by incorporating the Contract Net Protocol (CNP) and rule based reasoning concepts. The second service is a MAS based storage component realized through disk mirroring and Google file-system’s chunking with atomic append storage techniques. This research provides a candidate Opportunistic Grid Computing platform design and implementation through the use of MAS. Experiments conducted validated the design and implementation of the compute and storage services. From results, support for processing user applications; resource identification and allocation; and rule based reasoning validated the MA compute component. A MAS based file-system that implements chunking optimizations was considered to be optimum based on evaluations. The findings from the undertaken experiments also validated the functional adequacy of the implementation, and show the suitability of MAS for provisioning of robust, autonomous, and intelligent platforms. The context of this research, ICT4D, provides a solution to optimizing and increasing the utilization of computing resources that are usually idle in these contexts

    A survey on cost-effective context-aware distribution of social data streams over energy-efficient data centres

    Get PDF
    Social media have emerged in the last decade as a viable and ubiquitous means of communication. The ease of user content generation within these platforms, e.g. check-in information, multimedia data, etc., along with the proliferation of Global Positioning System (GPS)-enabled, always-connected capture devices lead to data streams of unprecedented amount and a radical change in information sharing. Social data streams raise a variety of practical challenges, including derivation of real-time meaningful insights from effectively gathered social information, as well as a paradigm shift for content distribution with the leverage of contextual data associated with user preferences, geographical characteristics and devices in general. In this article we present a comprehensive survey that outlines the state-of-the-art situation and organizes challenges concerning social media streams and the infrastructure of the data centres supporting the efficient access to data streams in terms of content distribution, data diffusion, data replication, energy efficiency and network infrastructure. We systematize the existing literature and proceed to identify and analyse the main research points and industrial efforts in the area as far as modelling, simulation and performance evaluation are concerned
    corecore