2,901 research outputs found

    Large-Scale Optical Neural Networks based on Photoelectric Multiplication

    Full text link
    Recent success in deep neural networks has generated strong interest in hardware accelerators to improve speed and energy consumption. This paper presents a new type of photonic accelerator based on coherent detection that is scalable to large (N106N \gtrsim 10^6) networks and can be operated at high (GHz) speeds and very low (sub-aJ) energies per multiply-and-accumulate (MAC), using the massive spatial multiplexing enabled by standard free-space optical components. In contrast to previous approaches, both weights and inputs are optically encoded so that the network can be reprogrammed and trained on the fly. Simulations of the network using models for digit- and image-classification reveal a "standard quantum limit" for optical neural networks, set by photodetector shot noise. This bound, which can be as low as 50 zJ/MAC, suggests performance below the thermodynamic (Landauer) limit for digital irreversible computation is theoretically possible in this device. The proposed accelerator can implement both fully-connected and convolutional networks. We also present a scheme for back-propagation and training that can be performed in the same hardware. This architecture will enable a new class of ultra-low-energy processors for deep learning.Comment: Text: 10 pages, 5 figures, 1 table. Supplementary: 8 pages, 5, figures, 2 table

    Bit Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Networks

    Full text link
    Fully realizing the potential of acceleration for Deep Neural Networks (DNNs) requires understanding and leveraging algorithmic properties. This paper builds upon the algorithmic insight that bitwidth of operations in DNNs can be reduced without compromising their classification accuracy. However, to prevent accuracy loss, the bitwidth varies significantly across DNNs and it may even be adjusted for each layer. Thus, a fixed-bitwidth accelerator would either offer limited benefits to accommodate the worst-case bitwidth requirements, or lead to a degradation in final accuracy. To alleviate these deficiencies, this work introduces dynamic bit-level fusion/decomposition as a new dimension in the design of DNN accelerators. We explore this dimension by designing Bit Fusion, a bit-flexible accelerator, that constitutes an array of bit-level processing elements that dynamically fuse to match the bitwidth of individual DNN layers. This flexibility in the architecture enables minimizing the computation and the communication at the finest granularity possible with no loss in accuracy. We evaluate the benefits of BitFusion using eight real-world feed-forward and recurrent DNNs. The proposed microarchitecture is implemented in Verilog and synthesized in 45 nm technology. Using the synthesis results and cycle accurate simulation, we compare the benefits of Bit Fusion to two state-of-the-art DNN accelerators, Eyeriss and Stripes. In the same area, frequency, and process technology, BitFusion offers 3.9x speedup and 5.1x energy savings over Eyeriss. Compared to Stripes, BitFusion provides 2.6x speedup and 3.9x energy reduction at 45 nm node when BitFusion area and frequency are set to those of Stripes. Scaling to GPU technology node of 16 nm, BitFusion almost matches the performance of a 250-Watt Titan Xp, which uses 8-bit vector instructions, while BitFusion merely consumes 895 milliwatts of power

    All-rounder: A flexible DNN accelerator with diverse data format support

    Full text link
    Recognizing the explosive increase in the use of DNN-based applications, several industrial companies developed a custom ASIC (e.g., Google TPU, IBM RaPiD, Intel NNP-I/NNP-T) and constructed a hyperscale cloud infrastructure with it. The ASIC performs operations of the inference or training process of DNN models which are requested by users. Since the DNN models have different data formats and types of operations, the ASIC needs to support diverse data formats and generality for the operations. However, the conventional ASICs do not fulfill these requirements. To overcome the limitations of it, we propose a flexible DNN accelerator called All-rounder. The accelerator is designed with an area-efficient multiplier supporting multiple precisions of integer and floating point datatypes. In addition, it constitutes a flexibly fusible and fissionable MAC array to support various types of DNN operations efficiently. We implemented the register transfer level (RTL) design using Verilog and synthesized it in 28nm CMOS technology. To examine practical effectiveness of our proposed designs, we designed two multiply units and three state-of-the-art DNN accelerators. We compare our multiplier with the multiply units and perform architectural evaluation on performance and energy efficiency with eight real-world DNN models. Furthermore, we compare benefits of the All-rounder accelerator to a high-end GPU card, i.e., NVIDIA GeForce RTX30390. The proposed All-rounder accelerator universally has speedup and high energy efficiency in various DNN benchmarks than the baselines

    Low Latency Prefix Accumulation Driven Compound MAC Unit for Efficient FIR Filter Implementation

    Get PDF
    135–138This article presents hierarchical single compound adder-based MAC with assertion based error correction for speculation variations in the prefix addition for FIR filter design. The VLSI implementation of approximation in prefix adder results show a significant delay and complexity reductions, all this at the cost of latency measures when speculation fails during carry propagation, which is the main reason preventing the use of speculation in parallel-prefix adders in DSP applications. The speculative adder which is based on Han Carlson parallel prefix adder structure accomplishes better reduction in latency. Introducing a structured and efficient shift-add technique and explore latency reduction by incorporating approximation in addition. The improvements made in terms of reduction in latency and merits in performance by the proposed MAC unit are showed through the synthesis done by FPGA hardware. Results show that proposed method outpaces both formerly projected MAC designs using multiplication methods for attaining high speed
    corecore