65 research outputs found

    LIPADE's Research Efforts Wireless Body Sensor Networks

    Get PDF

    Interference Mitigation for Cyber-Physical Wireless Body Area Network System Using Social Networks

    Get PDF
    Wireless body area networks (WBANs) are cyber-physical systems that emerged as a key technology to provide real-time health monitoring and ubiquitous healthcare services. WBANs could operate in dense environments such as in a hospital and lead to a high mutual communication interference in many application scenarios. The excessive interferences will significantly degrade the network performance, including depleting the energy of WBAN nodes more quickly and even eventually jeopardize people\u27s lives because of unreliable (caused by the interference) healthcare data collections. Therefore, it is critical to mitigate the interference among WBANs to increase the reliability of the WBAN system while minimizing the system power consumption. Many existing approaches can deal with communication interference mitigation in general wireless networks but are not suitable for WBANs because of ignoring the social nature of WBANs by them. Unlike the previous research, we for the first time propose a power game based approach to mitigate the communication interferences for WBANs based on the people\u27s social interaction information. Our major contributions include: 1) modeling the inter-WBANs interference and determine the distance distribution of the interference through both theoretical analysis and Monte Carlo simulations; 2) developing social interaction detection and prediction algorithms for people carrying WBANs; and 3) developing a power control game based on the social interaction information to maximize the system\u27s utility while minimize the energy consumption of WBANs system. The extensive simulation results show the effectiveness of the power control game for inter-WBAN interference mitigation using social interaction information. Our research opens a new research vista of WBANs using social networks

    Particle Swarm Optimization for Interference Mitigation of Wireless Body Area Network: A Systematic Review

    Get PDF
    Wireless body area networks (WBAN) has now become an important technology in supporting services in the health sector and several other fields. Various surveys and research have been carried out massively on the use of swarm intelligent (SI) algorithms in various fields in the last ten years, but the use of SI in wireless body area networks (WBAN) in the last five years has not seen any significant progress. The aim of this research is to clarify and convince as well as to propose a answer to this problem, we have identified opportunities and topic trends using the particle swarm optimization (PSO) procedure as one of the swarm intelligence for optimizing wireless body area network interference mitigation performance. In this research, we analyzes primary studies collected using predefined exploration strings on online databases with the help of Publish or Perish and by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) way. Articles were carefully selected for further analysis. It was found that very few researchers included optimization methods for swarm intelligence, especially PSO, in mitigating wireless body area network interference, whether for intra, inter, or cross-WBAN interference. This paper contributes to identifying the gap in using PSO for WBAN interference and also offers opportunities for using PSO both standalone and hybrid with other methods to further research on mitigating WBAN interference

    An Optimal Backoff Time-Based Internetwork Interference Mitigation Method in Wireless Body Area Network

    Get PDF
    When multiple Wireless Body Area Networks (WBANs) are aggregated, the overlapping region of their communications will result in internetwork interference, which could impose severe impacts on the reliability of WBAN performance. Therefore, how to mitigate the internetwork interference becomes the key problem to be solved urgently in practical applications of WBAN. However, most of the current researches on internetwork interference focus on traditional cellular networks and large-scale wireless sensor networks. In this paper, an Optimal Backoff Time Interference Mitigation Algorithm (OBTIM) is proposed. This method performs rescheduling or channel switching when the performance of the WBANs falls below tolerance, utilizing the cell neighbour list established by the beacon method. Simulation results show that the proposed method improves the channel utilization and the network throughput, and in the meantime, reduces the collision probability and energy consumption, when compared with the contention-based beacon schedule scheme

    Mitigation of packet loss with end-to-end delay in wireless body area network applications

    Get PDF
    The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN

    Cross-layer MAC/routing protocol for reliable communication in Internet of Health Things

    Get PDF
    Internet of Health Things (IoHT) involves intelligent, low-powered, and miniaturized sensors nodes that measure physiological signals and report them to sink nodes over wireless links. IoHTs have a myriad of applications in e-health and personal health monitoring. Because of the data’s sensitivity measured by the nodes and power-constraints of the sensor nodes, reliability and energy-efficiency play a critical role in communication in IoHT. Reliability is degraded by the increase in packets’ loss due to inefficient MAC, routing protocols, environmental interference, and body shadowing. Simultaneously, inefficient node selection for routing may cause the depletion of critical nodes’ energy resources. Recent advancements in cross-layer protocol optimizations have proven their efficiency for packet-based Internet. In this article, we propose a MAC/Routing-based Cross-layer protocol for reliable communication while preserving the sensor nodes’ energy resource in IoHT. The proposed mechanism employs a timer-based strategy for relay node selection. The timer-based approach incorporates the metrics for residual energy and received signal strength indicator to preserve the vital underlying resources of critical sensors in IoHT. The proposed approach is also extended for multiple sensor networks, where sensor in vicinity are coordinating and cooperating for data forwarding. The performance of the proposed technique is evaluated for metrics like Packet Loss Probability, End-To-End delay, and energy used per data packet. Extensive simulation results show that the proposed technique improves the reliability and energy-efficiency compared to the Simple Opportunistic Routing protocol

    On Research Challenges in Hybrid Medium Access Control Protocols for IEEE 802.15.6 WBANs

    Get PDF
    IEEE 802.15.6 is a Wireless Body Area Network (WBAN) standard proposed to facilitate the exponentially growing interest in the field of health monitoring. This standard is flexible and outlines multiple basic Medium Access Control (MAC) protocols that are contention based and collision free to meet the WBAN Quality of Service (QoS) challenges. Typically, current research trends in WBAN MAC focus on designing a hybrid MAC that is a combination of basic MAC protocols. In this paper, we provide a first detailed survey of existing hybrid MAC protocols based on IEEE 802.15.6 which would be useful for the related research community. Firstly, the paper lists the design challenges of a WBAN MAC. Secondly, it highlights the significance of hybrid MAC protocols in meeting the design challenges while comparing them to standard MAC protocols. Thirdly, a critical and thorough comparison of existing hybrid MAC protocols is presented in terms of network QoS and WBAN specific parameters. Lastly, we identify key open research areas that are often neglected in hybrid MAC design and further propose some possible directions for future research

    Wireless Body Area Network (WBAN): A Survey on Reliability, Fault Tolerance, and Technologies Coexistence

    Get PDF
    Wireless Body Area Network (WBAN) has been a key element in e-health to monitor bodies. This technology enables new applications under the umbrella of different domains, including the medical field, the entertainment and ambient intelligence areas. This survey paper places substantial emphasis on the concept and key features of the WBAN technology. First, the WBAN concept is introduced and a review of key applications facilitated by this networking technology is provided. The study then explores a wide variety of communication standards and methods deployed in this technology. Due to the sensitivity and criticality of the data carried and handled by WBAN, fault tolerance is a critical issue and widely discussed in this paper. Hence, this survey investigates thoroughly the reliability and fault tolerance paradigms suggested for WBANs. Open research and challenging issues pertaining to fault tolerance, coexistence and interference management and power consumption are also discussed along with some suggested trends in these aspect
    • …
    corecore