31 research outputs found

    Novel Inverse-Scattering Methods in Banach Spaces

    Get PDF
    The scientific community is presently strongly interested in the research of new microwave imaging methods, in order to develop reliable, safe, portable, and cost-effective tools for the non-invasive/non-destructive diagnostic in many fields (such as medicine, civil and industrial engineering, \u2026). In this framework, microwave imaging techniques addressing the full three-dimensional nature of the inspected bodies are still very challenging, since they need to cope with significant computational complexity. Moreover, non-linearity and ill-posedness issues, which usually affects the related inverse scattering problems, need to be faced, too. Another promising topic is the development of phaseless methods, in which only the amplitude of the electric field is assumed to be measurable. This leads to a significant complexity reduction and lower cost for the experimental apparatuses, but the missing information on the phase of the electric field samples exacerbates the ill-posedness problems. In the present Thesis, a novel inexact-Newton inversion algorithm is proposed, in which the iteratively linearized problems are solved in a regularized sense by using a truncated Landweber or a conjugate gradient method developed in the framework of the l^p Banach spaces. This is an improvement that allows to generalize the classic framework of the l^2 Hilbert spaces in which the inexact-Newton approaches are usually defined. The applicability of the proposed imaging method in both the 3D full-vector and 2D phaseless scenarios at microwave frequencies is assessed in this Thesis, and an extensive validation of the proposed imaging method against both synthetic and experimental data is presented, highlighting the advantages over the inexact-Newton scheme developed in the classic framework of the l^2 Hilbert spaces

    Microwave tomography with phaseless data on the calcaneus by means of artificial neural networks

    Get PDF
    The aim of this study is to use a multilayer perceptron (MLP) artificial neural network (ANN) for phaseless imaging the human heel (modeled as a bilayer dielectric media: bone and surrounding tissue) and the calcaneus cross-section size and location using a two-dimensional (2D) microwave tomographic array. Computer simulations were performed over 2D dielectric maps inspired by computed tomography (CT) images of human heels for training and testing the MLP. A morphometric analysis was performed to account for the scatterer shape influence on the results. A robustness analysis was also conducted in order to study the MLP performance in noisy conditions. The standard deviations of the relative percentage errors on estimating the dielectric properties of the calcaneus bone were relatively high. Regarding the calcaneus surrounding tissue, the dielectric parameters estimations are better, with relative percentage error standard deviations up to ≈ 15%. The location and size of the calcaneus are always properly estimated with absolute error standard deviations up to ≈ 3 mm.Fil: Fajardo Freites, Jesús Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Lotto, Federico Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Vericat, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Tecnológica Nacional. Facultad Regional La Plata. Departamento de Ingeniería Mecánica; ArgentinaFil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentin

    phaseless tomographic inverse scattering in banach spaces

    Get PDF
    In conventional microwave imaging, a hidden dielectric object under test is illuminated by microwave incident waves and the field it scatters is measured in magnitude and phase in order to retrieve the dielectric properties by solving the related non-homogenous Helmholtz equation or its Lippmann-Schwinger integral formulation. Since the measurement of the phase of electromagnetic waves can be still considered expensive in real applications, in this paper only the magnitude of the scattering wave fields is measured in order to allow a reduction of the cost of the measurement apparatus. In this respect, we firstly analyse the properties of the phaseless scattering nonlinear forward modelling operator in its integral form and we provide an analytical expression for computing its Frechet derivative. Then, we propose an inexact Newton method to solve the associated nonlinear inverse problems, where any linearized step is solved by a Lp Banach space iterative regularization method which acts on the dual space Lp* . Indeed, it is well known that regularization in special Banach spaces, such us Lp with 1 < p < 2, allows to promote sparsity and to reduce Gibbs phenomena and over-smoothness. Preliminary results concerning numerically computed field data are shown

    Detection of failures in antenna arrays through a Lebesgue-space approach

    Get PDF
    In this paper, a novel antenna array diagnostic approach is presented. The failures in antenna arrays are detected by means of a non-Hilbertian Lebesgue-space L-p technique to solve the underlying inverse problem. The solution of this inverse problem enables to retrieve the distribution of faulty feed excitations of the antenna under test starting from far-field measurements. The developed approach has been numerically validated. Simulations concern planar arrays where different rates and distributions of failures have been tested. Results show good capabilities in detecting damaged regions in the analyzed scenarios

    Electromagnetic inverse scattering problems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Different Approaches of Numerical Analysis of Electromagnetic Phenomena in Shaded Pole Motor with Application of Finite Elements Method

    Get PDF
    In this paper is used Finite Element Method-FEM for analysis of electromagnetic quantities of small micro motor – single phase shaded pole motor-SPSPM. FEM is widely used numerical method for solving nonlinear partial differential equations with variable coefficients. For that purpose motor model is developed with exact geometry and material’s characteristics. Two different approaches are applied in FEM analysis of electromagnetic phenomena inside the motor: magneto-static where all electromagnetic quantities are analysed in exact moment of time meaning frequency f=0 Hz and timeharmonic magnetic approach where the magnetic field inside the machine is time varying, meaning frequency f=50 Hz. Obtained results are presented and compared with available analytical result

    Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two-Dimensional Perfectly Conducting Cylinder in Slab Medium

    Get PDF
    [[abstract]]The application of four techniques for the shape reconstruction of a 2-D metallic cylinder buried in dielectric slab medium by measured the cattered fields outside is studied in the paper. The finite-difference time-domain (FDTD) technique is employed for electromagnetic analyses for both the forward and inverse scattering problems, while the shape reconstruction problem is transformed into optimization one during the course of inverse scattering. Then, four techniques including asynchronous particle swarm optimization (APSO), PSO, dynamic differential evolution (DDE) and self-adaptive DDE (SADDE) are applied to reconstruct the location and shape of the 2-Dmetallic cylinder for comparative purposes. The statistical performances of these algorithms are compared. The results show that SADDE outperforms PSO, APSO and DDE in terms of the ability of exploring the optima. However, these results are considered to be indicative and do not generally apply to all optimization problems in electromagnetics.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子
    corecore