105 research outputs found

    Energy harvesting from human and machine motion for wireless electronic devices

    No full text
    Published versio

    Bluetooth-Based Sensor Networks for Remotely Monitoring the Physiological Signals of a Patient

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.Peer reviewe

    Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Get PDF
    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    SUSTAINABLE ENERGY HARVESTING TECHNOLOGIES – PAST, PRESENT AND FUTURE

    Get PDF
    Chapter 8: Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerato

    Cattle-powered nodes experience in a heterogeneous network for localization of herds

    Full text link
    A heterogeneous network, mainly based on nodes that use harvested energy to self-energize is presented and its use demonstrated. The network, mostly kinetically powered, has been used for the localization of herds in grazing areas under extreme climate conditions. The network consists of secondary and primary nodes. The former, powered by a kinetic generator, take advantage of animal movements to broadcast a unique identifier. The latter are battery-powered and gather secondarynode transmitted information to provide it, along with position and time data, to a final base station in charge of the animal monitoring. Because a limited human interaction is desirable, the aim of this network is to reduce the battery count of the system

    A Fully-Flexible Solution-Processed Autonomous Glucose Indicator

    Get PDF
    We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge cycle, which is directly correlated to the glucose concentration. Our indicator was shown to operate at high sensitivity within a linear glucose concentration range of 1 mM-45 mM glucose continuously, achieving a 1.8 VDC output from a flexible indicator system that deliver sufficient power to drive an LED circuit. Importantly, the results presented provide a basis upon which further development of indicator systems with biocompatible diffusing polymers to act as buffering diffusion barriers, thereby allowing them to be potentially useful for low-cost, direct-line-of-sight applications in medicine, husbandry, agriculture, and the food and beverage industries

    Microsystem based Energy Harvesting (EH-MEMS): Powering pervasivity of the Internet of Things (IoT) – A review with focus on mechanical vibrations

    Get PDF
    The paradigm of the Internet of Things (IoT) appears to be the common denominator of all distributed sensing applications, providing connectivity, interoperability and communication of smart entities (e.g. environments, objects) within a pervasive network. The IoT demands for smart, integrated, miniaturised and low-energy wireless nodes, typically powered by non-renewable energy storage units (batteries). The latter aspect poses constraints as batteries have a limited lifetime and often their replacement is impracticable. Availability of zero-power energy-autonomous technologies, able to harvest (i.e. convert) and store part of the energy available in the surrounding environment (vibrations, thermal gradients, electromagnetic waves) into electricity to supply wireless nodes functionality, would fill a significant part of the technology gap limiting the wide diffusion of efficient and cost effective IoT applications. Given the just depicted scenario, the realisation of miniaturised Energy Harvesters (EHs) leveraging on MEMS technology (MicroElectroMechanical-Systems), i.e. EH-MEMS, seems to be a key-enabling solution able to conjugate both main driving requirements of IoT applications, namely, energy-autonomy and miniaturisation/integration.This short review outlines the current state of the art in the field of EH-MEMS, with a specific focus on vibration EHs, i.e. converters capable to convert the mechanical energy scattered in environmental vibrations, into electric power. In particular, the issues in terms of conversion performance arising from EHs scaling down, along with the challenge to extend their operability on a frequency range of vibrations as wider as possible, are going to be discussed in the following. Keywords: Energy Harvesting (EH), MEMS, Internet of Things (IoE), Ultra-Low Power (ULP), Zero-power electronic

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure
    corecore