5,992 research outputs found

    Machine Learning Approaches for the Prioritisation of Cardiovascular Disease Genes Following Genome- wide Association Study

    Get PDF
    Genome-wide association studies (GWAS) have revealed thousands of genetic loci, establishing itself as a valuable method for unravelling the complex biology of many diseases. As GWAS has grown in size and improved in study design to detect effects, identifying real causal signals, disentangling from other highly correlated markers associated by linkage disequilibrium (LD) remains challenging. This has severely limited GWAS findings and brought the method’s value into question. Although thousands of disease susceptibility loci have been reported, causal variants and genes at these loci remain elusive. Post-GWAS analysis aims to dissect the heterogeneity of variant and gene signals. In recent years, machine learning (ML) models have been developed for post-GWAS prioritisation. ML models have ranged from using logistic regression to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models (i.e., neural networks). When combined with functional validation, these methods have shown important translational insights, providing a strong evidence-based approach to direct post-GWAS research. However, ML approaches are in their infancy across biological applications, and as they continue to evolve an evaluation of their robustness for GWAS prioritisation is needed. Here, I investigate the landscape of ML across: selected models, input features, bias risk, and output model performance, with a focus on building a prioritisation framework that is applied to blood pressure GWAS results and tested on re-application to blood lipid traits

    Analysis and Design of Detection for Liver Cancer using Particle Swarm Optimization and Decision Tree

    Get PDF
    Liver cancer is taken as a major cause of death all over the world. According to WHO (World Health Organization) every year 9.6 million peoples are died due to cancer worldwide. It is one of the eighth most leading causes of death in women and fifth in men as reported by the American Cancer Society. The number of death rate due to cancer is projected to increase by45 percent in between 2008 to 2030. The most common cancers are lung, breast, and liver, colorectal. Approximately 7, 82,000 peoples are died due to liver cancer each year. The most efficient way to decrease the death rate cause of liver cancer is to treat the diseases in the initial stage. Early treatment depends upon the early diagnosis, which depends on reliable diagnosis methods. CT imaging is one of the most common and important technique and it acts as an imaging tool for evaluating the patients with intuition of liver cancer. The diagnosis of liver cancer has historically been made manually by a skilled radiologist, who relied on their expertise and personal judgement to reach a conclusion. The main objective of this paper is to develop the automatic methods based on machine learning approach for accurate detection of liver cancer in order to help radiologists in the clinical practice. The paper primary contribution to the process of liver cancer lesion classification and automatic detection for clinical diagnosis. For the purpose of detecting liver cancer lesions, the best approaches based on PSO and DPSO have been given. With the help of the C4.5 decision tree classifier, wavelet-based statistical and morphological features were retrieved and categorised

    Implementation of Hybrid Prediction Model: An Unsupervised and Supervised Learning Perspective

    Get PDF
    Using raw data to make inferences is the core of data science. This might be accomplished by closely examining the complex trends and patterns in the data. Machine Learning based forecasting methods have shown useful in predicting perioperative outcomes to improve the quality of future event planning decisions. In many application sectors where machine learning models were used, it has long been necessary to identify and prioritise the negative characteristics of a threat. Wish to provide precise predictions about a certain set of data, for example, use machine learning techniques in data science. Numerous prediction algorithms are now in use to address forecasting issues. Numerous epidemiological models are being employed internationally to forecast pandemic mortality rates and the number of affected people. Making the right decisions depends on the development of reliable prediction models. Epidemiological models have had trouble making longer-term forecasts with a higher degree of accuracy due to a lack of significant data and ambiguity. This research suggests a hybrid machine learning approach to anticipate the pandemic in contrast to Susceptible-Infected-Resistant based models, and we demonstrate its potential using COVID-19 data from India. Order to improve the identification of epidemics early, The model can also be updated using data from sources like search engine searches. Results from two well-known machine learning methods were compared to those from the improved SIR and SEIQR models

    Artificial General Intelligence for Radiation Oncology

    Full text link
    The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-spectrum applications of AGI across radiation oncology including initial consultation, simulation, treatment planning, treatment delivery, treatment verification, and patient follow-up. The fusion of vision data with LLMs also creates powerful multimodal models that elucidate nuanced clinical patterns. Together, AGI promises to catalyze a shift towards data-driven, personalized radiation therapy. However, these models should complement human expertise and care. This paper provides an overview of how AGI can transform radiation oncology to elevate the standard of patient care in radiation oncology, with the key insight being AGI's ability to exploit multimodal clinical data at scale

    Utilizing artificial intelligence in perioperative patient flow:systematic literature review

    Get PDF
    Abstract. The purpose of this thesis was to map the existing landscape of artificial intelligence (AI) applications used in secondary healthcare, with a focus on perioperative care. The goal was to find out what systems have been developed, and how capable they are at controlling perioperative patient flow. The review was guided by the following research question: How is AI currently utilized in patient flow management in the context of perioperative care? This systematic literature review examined the current evidence regarding the use of AI in perioperative patient flow. A comprehensive search was conducted in four databases, resulting in 33 articles meeting the inclusion criteria. Findings demonstrated that AI technologies, such as machine learning (ML) algorithms and predictive analytics tools, have shown somewhat promising outcomes in optimizing perioperative patient flow. Specifically, AI systems have proven effective in predicting surgical case durations, assessing risks, planning treatments, supporting diagnosis, improving bed utilization, reducing cancellations and delays, and enhancing communication and collaboration among healthcare providers. However, several challenges were identified, including the need for accurate and reliable data sources, ethical considerations, and the potential for biased algorithms. Further research is needed to validate and optimize the application of AI in perioperative patient flow. The contribution of this thesis is summarizing the current state of the characteristics of AI application in perioperative patient flow. This systematic literature review provides information about the features of perioperative patient flow and the clinical tasks of AI applications previously identified

    k-Means

    Get PDF

    Cyberbullying in educational context

    Get PDF
    Kustenmacher and Seiwert (2004) explain a man’s inclination to resort to technology in his interaction with the environment and society. Thus, the solution to the negative consequences of Cyberbullying in a technologically dominated society is represented by technology as part of the technological paradox (Tugui, 2009), in which man has a dual role, both slave and master, in the interaction with it. In this respect, it is noted that, notably after 2010, there have been many attempts to involve artificial intelligence (AI) to recognize, identify, limit or avoid the manifestation of aggressive behaviours of the CBB type. For an overview of the use of artificial intelligence in solving various problems related to CBB, we extracted works from the Scopus database that respond to the criterion of the existence of the words “cyberbullying” and “artificial intelligence” in the Title, Keywords and Abstract. These articles were the subject of the content analysis of the title and, subsequently, only those that are identified as a solution in the process of recognizing, identifying, limiting or avoiding the manifestation of CBB were kept in the following Table where we have these data synthesized and organized by years

    Artificial Intelligence, Robots, and Philosophy

    Get PDF
    This book is a collection of all the papers published in the special issue “Artificial Intelligence, Robots, and Philosophy,” Journal of Philosophy of Life, Vol.13, No.1, 2023, pp.1-146. The authors discuss a variety of topics such as science fiction and space ethics, the philosophy of artificial intelligence, the ethics of autonomous agents, and virtuous robots. Through their discussions, readers are able to think deeply about the essence of modern technology and the future of humanity. All papers were invited and completed in spring 2020, though because of the Covid-19 pandemic and other problems, the publication was delayed until this year. I apologize to the authors and potential readers for the delay. I hope that readers will enjoy these arguments on digital technology and its relationship with philosophy. *** Contents*** Introduction : Descartes and Artificial Intelligence; Masahiro Morioka*** Isaac Asimov and the Current State of Space Science Fiction : In the Light of Space Ethics; Shin-ichiro Inaba*** Artificial Intelligence and Contemporary Philosophy : Heidegger, Jonas, and Slime Mold; Masahiro Morioka*** Implications of Automating Science : The Possibility of Artificial Creativity and the Future of Science; Makoto Kureha*** Why Autonomous Agents Should Not Be Built for War; István Zoltán Zárdai*** Wheat and Pepper : Interactions Between Technology and Humans; Minao Kukita*** Clockwork Courage : A Defense of Virtuous Robots; Shimpei Okamoto*** Reconstructing Agency from Choice; Yuko Murakami*** Gushing Prose : Will Machines Ever be Able to Translate as Badly as Humans?; Rossa Ó Muireartaigh**

    Leveraging a machine learning based predictive framework to study brain-phenotype relationships

    Get PDF
    An immense collective effort has been put towards the development of methods forquantifying brain activity and structure. In parallel, a similar effort has focused on collecting experimental data, resulting in ever-growing data banks of complex human in vivo neuroimaging data. Machine learning, a broad set of powerful and effective tools for identifying multivariate relationships in high-dimensional problem spaces, has proven to be a promising approach toward better understanding the relationships between the brain and different phenotypes of interest. However, applied machine learning within a predictive framework for the study of neuroimaging data introduces several domain-specific problems and considerations, leaving the overarching question of how to best structure and run experiments ambiguous. In this work, I cover two explicit pieces of this larger question, the relationship between data representation and predictive performance and a case study on issues related to data collected from disparate sites and cohorts. I then present the Brain Predictability toolbox, a soft- ware package to explicitly codify and make more broadly accessible to researchers the recommended steps in performing a predictive experiment, everything from framing a question to reporting results. This unique perspective ultimately offers recommen- dations, explicit analytical strategies, and example applications for using machine learning to study the brain
    • …
    corecore