167 research outputs found

    Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier

    Get PDF
    We propose a computer aided detection (CAD) system for the detection and classification of suspicious regions in mammographic images. This system combines a dimensionality reduction module (using principal component analysis), a feature extraction module (using independent component analysis), and a feature subset selection module (using rough set model). Rough set model is used to reduce the effect of data inconsistency while a fuzzy classifier is integrated into the system to label subimages into normal or abnormal regions. The experimental results show that this system has an accuracy of 84.03% and a recall percentage of 87.28%

    Multi-Criterion Mammographic Risk Analysis Supported with Multi-Label Fuzzy-Rough Feature Selection

    Get PDF
    Context and background Breast cancer is one of the most common diseases threatening the human lives globally, requiring effective and early risk analysis for which learning classifiers supported with automated feature selection offer a potential robust solution. Motivation Computer aided risk analysis of breast cancer typically works with a set of extracted mammographic features which may contain significant redundancy and noise, thereby requiring technical developments to improve runtime performance in both computational efficiency and classification accuracy. Hypothesis Use of advanced feature selection methods based on multiple diagnosis criteria may lead to improved results for mammographic risk analysis. Methods An approach for multi-criterion based mammographic risk analysis is proposed, by adapting the recently developed multi-label fuzzy-rough feature selection mechanism. Results A system for multi-criterion mammographic risk analysis is implemented with the aid of multi-label fuzzy-rough feature selection and its performance is positively verified experimentally, in comparison with representative popular mechanisms. Conclusions The novel approach for mammographic risk analysis based on multiple criteria helps improve classification accuracy using selected informative features, without suffering from the redundancy caused by such complex criteria, with the implemented system demonstrating practical efficacy

    Hybrid Image Mining Methods to Classify the Abnormality in Complete Field Image Mammograms Based on Normal Regions

    Get PDF
    Breast Cancer now becomes a common disease among woman in developing as well as developed countries. Many noninvasive methodologies have been used to detect breast cancer. Computer Aided diagnosis through, Mammography is a widely used as a screening tool and is the gold standard for the early detection of breast cancer. The classification of breast masses into the benign and malignant categories is an important problem in the area of computer-aided diagnosis of breast cancer. We present a new method for complete total image of mammogram analysis. A mammogram is analyzed region by region and is classified as normal or abnormal. We present a hybrid technique for extracting features that can be used to distinguish normal and abnormal regions of a mammogram. We describe our classifier technique that uses a unique re-classification method to boost the classification performance. Our proposed hybrid technique comprises decision tree followed by association rule miner shows most proficient and promising performance with high classification rate compared to many other classifiers. We have tested this technique on a set of ground-truth complete total image of mammograms and the result was quite effective

    Breast Tissue Classification via Interval Type 2 Fuzzy Logic Based Rough Set

    Get PDF
    BIRADS is a Breast Imaging, Reporting and Data System. A tool to standardize mammogram reports and minimizes ambiguity during mammogram image evaluation. Classification of BIRADS is one of the most challenging tasks to radiologist. An apt treatment can be administered to the patient by the oncologist upon acquiring sufficient information at BIRADS stage. This study aspired to build a model, which classifies BIRADS using mammograms images and reports. Through the implementation of type-2 fuzzy logic as classifier, an automatically generated rules will be applied to the model. Comparison of accuracy, specificity and sensitivity of the modal will be performed vis-à-vis rules given by the experts. The study encompasses a number of steps beginning with collection of the data from Radiology Department of National University of Malaysia Medical Center. The data was initially processed to remove noise and gaps. Then, an algorithm developed by selecting type-2 fuzzy logic using Mamdani model. Three types of membership functions were employed in the study. Among the rules that used by the model were obtained from experts as well as generated automatically by the system using rough set theory. Finally, the model was tested and trained to get the best result. The study shows that triangular membership function based on rough set rules obtains 89% whereas expert driven rules gains about 78% of accuracy rates. The sensitivity using expert rules is 98.24% whereas rough set rules obtained 93.94%. Specificity for using expert rules and rough set rules are 73.33%, 84.34% consecutively. Conclusion: Based on statistical analysis, the model which employed rules generated automatically by rough set theory fared better in comparison to the model using rules given by the experts.

    Modified fuzzy rough set technique with stacked autoencoder model for magnetic resonance imaging based breast cancer detection

    Get PDF
    Breast cancer is the common cancer in women, where early detection reduces the mortality rate. The magnetic resonance imaging (MRI) images are efficient in analyzing breast cancer, but it is hard to identify the abnormalities. The manual breast cancer detection in MRI images is inefficient; therefore, a deep learning-based system is implemented in this manuscript. Initially, the visual quality improvement is done using region growing and adaptive histogram equalization (AHE), and then, the breast lesion is segmented by Otsu thresholding with morphological transform. Next, the features are extracted from the segmented lesion, and a modified fuzzy rough set technique is proposed to reduce the dimensions of the extracted features that decreases the system complexity and computational time. The active features are fed to the stacked autoencoder for classifying the benign and malignant classes. The results demonstrated that the proposed model attained 99% and 99.22% of classification accuracy on the benchmark datasets, which are higher related to the comparative classifiers: decision tree, naïve Bayes, random forest and k-nearest neighbor (KNN). The obtained results state that the proposed model superiorly screens and detects the breast lesions that assists clinicians in effective therapeutic intervention and timely treatment

    Artificial Intelligence Techniques for Cancer Detection and Classification: Review Study

    Get PDF
    Cancer is the general name for a group of more than 100 diseases. Although cancer includes different types of diseases, they all start because abnormal cells grow out of control. Without treatment, cancer can cause serious health problems and even loss of life. Early detection of cancer may reduce mortality and morbidity. This paper presents a review of the detection methods for lung, breast, and brain cancers. These methods used for diagnosis include artificial intelligence techniques, such as support vector machine neural network, artificial neural network, fuzzy logic, and adaptive neuro-fuzzy inference system, with medical imaging like X-ray, ultrasound, magnetic resonance imaging, and computed tomography scan images. Imaging techniques are the most important approach for precise diagnosis of human cancer. We investigated all these techniques to identify a method that can provide superior accuracy and determine the best medical images for use in each type of cancer

    A Modified LeNet CNN for Breast Cancer Diagnosis in Ultrasound Images

    Get PDF
    Convolutional neural networks (CNNs) have been extensively utilized in medical image processing to automatically extract meaningful features and classify various medical conditions, enabling faster and more accurate diagnoses. In this paper, LeNet, a classic CNN architecture, has been successfully applied to breast cancer data analysis. It demonstrates its ability to extract discriminative features and classify malignant and benign tumors with high accuracy, thereby supporting early detection and diagnosis of breast cancer. LeNet with corrected Rectified Linear Unit (ReLU), a modification of the traditional ReLU activation function, has been found to improve the performance of LeNet in breast cancer data analysis tasks via addressing the “dying ReLU” problem and enhancing the discriminative power of the extracted features. This has led to more accurate, reliable breast cancer detection and diagnosis and improved patient outcomes. Batch normalization improves the performance and training stability of small and shallow CNN architecture like LeNet. It helps to mitigate the effects of internal covariate shift, which refers to the change in the distribution of network activations during training. This classifier will lessen the overfitting problem and reduce the running time. The designed classifier is evaluated against the benchmarking deep learning models, proving that this has produced a higher recognition rate. The accuracy of the breast image recognition rate is 89.91%. This model will achieve better performance in segmentation, feature extraction, classification, and breast cancer tumor detection
    corecore