498 research outputs found

    BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images

    Full text link
    In cryo-electron microscopy (EM), molecular structures are determined from large numbers of projection images of individual particles. To harness the full power of this single-molecule information, we use the Bayesian inference of EM (BioEM) formalism. By ranking structural models using posterior probabilities calculated for individual images, BioEM in principle addresses the challenge of working with highly dynamic or heterogeneous systems not easily handled in traditional EM reconstruction. However, the calculation of these posteriors for large numbers of particles and models is computationally demanding. Here we present highly parallelized, GPU-accelerated computer software that performs this task efficiently. Our flexible formulation employs CUDA, OpenMP, and MPI parallelization combined with both CPU and GPU computing. The resulting BioEM software scales nearly ideally both on pure CPU and on CPU+GPU architectures, thus enabling Bayesian analysis of tens of thousands of images in a reasonable time. The general mathematical framework and robust algorithms are not limited to cryo-electron microscopy but can be generalized for electron tomography and other imaging experiments

    Reconstruction for Time-Domain In Vivo EPR 3D Multigradient Oximetric Imaging—A Parallel Processing Perspective

    Get PDF
    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 × 23 × 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time

    Applications in GNSS water vapor tomography

    Get PDF
    Algebraic reconstruction algorithms are iterative algorithms that are used in many area including medicine, seismology or meteorology. These algorithms are known to be highly computational intensive. This may be especially troublesome for real-time applications or when processed by conventional low-cost personnel computers. One of these real time applications is the reconstruction of water vapor images from Global Navigation Satellite System (GNSS) observations. The parallelization of algebraic reconstruction algorithms has the potential to diminish signi cantly the required resources permitting to obtain valid solutions in time to be used for nowcasting and forecasting weather models. The main objective of this dissertation was to present and analyse diverse shared memory libraries and techniques in CPU and GPU for algebraic reconstruction algorithms. It was concluded that the parallelization compensates over sequential implementations. Overall the GPU implementations were found to be only slightly faster than the CPU implementations, depending on the size of the problem being studied. A secondary objective was to develop a software to perform the GNSS water vapor reconstruction using the implemented parallel algorithms. This software has been developed with success and diverse tests were made namely with synthetic and real data, the preliminary results shown to be satisfactory. This dissertation was written in the Space & Earth Geodetic Analysis Laboratory (SEGAL) and was carried out in the framework of the Structure of Moist convection in high-resolution GNSS observations and models (SMOG) (PTDC/CTE-ATM/119922/2010) project funded by FCT.Algoritmos de reconstrução algébrica são algoritmos iterativos que são usados em muitas áreas incluindo medicina, sismologia ou meteorologia. Estes algoritmos são conhecidos por serem bastante exigentes computacionalmente. Isto pode ser especialmente complicado para aplicações de tempo real ou quando processados por computadores pessoais de baixo custo. Uma destas aplicações de tempo real é a reconstrução de imagens de vapor de água a partir de observações de sistemas globais de navegação por satélite. A paralelização dos algoritmos de reconstrução algébrica permite que se reduza significativamente os requisitos computacionais permitindo obter soluções válidas para previsão meteorológica num curto espaço de tempo. O principal objectivo desta dissertação é apresentar e analisar diversas bibliotecas e técnicas multithreading para a reconstrução algébrica em CPU e GPU. Foi concluído que a paralelização compensa sobre a implementações sequenciais. De um modo geral as implementações GPU obtiveram resultados relativamente melhores que implementações em CPU, isto dependendo do tamanho do problema a ser estudado. Um objectivo secundário era desenvolver uma aplicação que realizasse a reconstrução de imagem de vapor de água através de sistemas globais de navegação por satélite de uma forma paralela. Este software tem sido desenvolvido com sucesso e diversos testes foram realizados com dados sintéticos e dados reais, os resultados preliminares foram satisfatórios. Esta dissertação foi escrita no Space & Earth Geodetic Analysis Laboratory (SEGAL) e foi realizada de acordo com o projecto Structure 01' Moist convection in high-resolution GNSS observations and models (SMOG) (PTDC / CTE-ATM/ 11992212010) financiado pelo FCT.Fundação para a Ciência e a Tecnologia (FCT

    Invasive compute balancing for applications with shared and hybrid parallelization

    Get PDF
    This is the author manuscript. The final version is available from the publisher via the DOI in this record.Achieving high scalability with dynamically adaptive algorithms in high-performance computing (HPC) is a non-trivial task. The invasive paradigm using compute migration represents an efficient alternative to classical data migration approaches for such algorithms in HPC. We present a core-distribution scheduler which realizes the migration of computational power by distributing the cores depending on the requirements specified by one or more parallel program instances. We validate our approach with different benchmark suites for simulations with artificial workload as well as applications based on dynamically adaptive shallow water simulations, and investigate concurrently executed adaptivity parameter studies on realistic Tsunami simulations. The invasive approach results in significantly faster overall execution times and higher hardware utilization than alternative approaches. A dynamic resource management is therefore mandatory for a more efficient execution of scenarios similar to our simulations, e.g. several Tsunami simulations in urgent computing, to overcome strong scalability challenges in the area of HPC. The optimizations obtained by invasive migration of cores can be generalized to similar classes of algorithms with dynamic resource requirements.This work was supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre ”Invasive Computing” (SFB/TR 89)

    XcalableMP PGAS Programming Language

    Get PDF
    XcalableMP is a directive-based parallel programming language based on Fortran and C, supporting a Partitioned Global Address Space (PGAS) model for distributed memory parallel systems. This open access book presents XcalableMP language from its programming model and basic concept to the experience and performance of applications described in XcalableMP.  XcalableMP was taken as a parallel programming language project in the FLAGSHIP 2020 project, which was to develop the Japanese flagship supercomputer, Fugaku, for improving the productivity of parallel programing. XcalableMP is now available on Fugaku and its performance is enhanced by the Fugaku interconnect, Tofu-D. The global-view programming model of XcalableMP, inherited from High-Performance Fortran (HPF), provides an easy and useful solution to parallelize data-parallel programs with directives for distributed global array and work distribution and shadow communication. The local-view programming adopts coarray notation from Coarray Fortran (CAF) to describe explicit communication in a PGAS model. The language specification was designed and proposed by the XcalableMP Specification Working Group organized in the PC Consortium, Japan. The Omni XcalableMP compiler is a production-level reference implementation of XcalableMP compiler for C and Fortran 2008, developed by RIKEN CCS and the University of Tsukuba. The performance of the XcalableMP program was used in the Fugaku as well as the K computer. A performance study showed that XcalableMP enables a scalable performance comparable to the message passing interface (MPI) version with a clean and easy-to-understand programming style requiring little effort
    corecore