2,598 research outputs found

    Topology Optimization in Hybrid Tree/Mesh-based Peer-to-Peer Streaming System

    Get PDF
    Peer-to-Peer (P2P) video streaming is the fastest growing application of the Internet. One of the main challenge is to provide a high quality of service through the dynamic behavior of the network because a peer may join or leave anytime. Currently, P2P streaming network exist two types of users: streaming users - who use mobile devices with 3G/4G connection expect to watch the live video immediately and storage users - who use PC with wired Internet will download and then watch the video later. We realized that the streaming users may stop watching live video after a while if they find the video is out of their interest. Users leaving causes dynamic and affect the data delivery. On the other hand, the storage users that are downloading the video do not have the concern of interest and playback quality, until they start to watch the video. Hence, the storage users are relatively more stable than streaming users. This paper, we investigate the strategies on the topology construction and maintenance of P2P streaming systems with storage users are closer to the broadcaster than streaming users. And also we apply our idea on hybrid push-pull protocol that combines the benefits of pull and push mechanisms for live video delivery to provide better video streaming qualit

    Taxonomy of P2P Applications

    Get PDF
    Peer-to-peer (p2p) networks have gained immense popularity in recent years and the number of services they provide continuously rises. Where p2p-networks were formerly known as file-sharing networks, p2p is now also used for services like VoIP and IPTV. With so many different p2p applications and services the need for a taxonomy framework rises. This paper describes the available p2p applications grouped by the services they provide. A taxonomy framework is proposed to classify old and recent p2p applications based on their characteristics

    AngelCast: cloud-based peer-assisted live streaming using optimized multi-tree construction

    Full text link
    Increasingly, commercial content providers (CPs) offer streaming solutions using peer-to-peer (P2P) architectures, which promises significant scalabil- ity by leveraging clients’ upstream capacity. A major limitation of P2P live streaming is that playout rates are constrained by clients’ upstream capac- ities – typically much lower than downstream capacities – which limit the quality of the delivered stream. To leverage P2P architectures without sacri- ficing quality, CPs must commit additional resources to complement clients’ resources. In this work, we propose a cloud-based service AngelCast that enables CPs to complement P2P streaming. By subscribing to AngelCast, a CP is able to deploy extra resources (angel), on-demand from the cloud, to maintain a desirable stream quality. Angels do not download the whole stream, nor are they in possession of it. Rather, angels only relay the minimal fraction of the stream necessary to achieve the desired quality. We provide a lower bound on the minimum angel capacity needed to maintain a desired client bit-rate, and develop a fluid model construction to achieve it. Realizing the limitations of the fluid model construction, we design a practical multi- tree construction that captures the spirit of the optimal construction, and avoids its limitations. We present a prototype implementation of AngelCast, along with experimental results confirming the feasibility of our service.Supported in part by NSF awards #0720604, #0735974, #0820138, #0952145, #1012798 #1012798 #1430145 #1414119. (0720604 - NSF; 0735974 - NSF; 0820138 - NSF; 0952145 - NSF; 1012798 - NSF; 1430145 - NSF; 1414119 - NSF

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Band Codes for Energy-Efficient Network Coding with Application to P2P Mobile Streaming

    Get PDF
    A key problem in random network coding (NC) lies in the complexity and energy consumption associated with the packet decoding processes, which hinder its application in mobile environments. Controlling and hence limiting such factors has always been an important but elusive research goal, since the packet degree distribution, which is the main factor driving the complexity, is altered in a non-deterministic way by the random recombinations at the network nodes. In this paper we tackle this problem proposing Band Codes (BC), a novel class of network codes specifically designed to preserve the packet degree distribution during packet encoding, ecombination and decoding. BC are random codes over GF(2) that exhibit low decoding complexity, feature limited and controlled degree distribution by construction, and hence allow to effectively apply NC even in energy-constrained scenarios. In particular, in this paper we motivate and describe our new design and provide a thorough analysis of its performance. We provide numerical simulations of the performance of BC in order to validate the analysis and assess the overhead of BC with respect to a onventional NC scheme. Moreover, peer-to-peer media streaming experiments with a random-push protocol show that BC reduce the decoding complexity by a factor of two, to a point where NC-based mobile streaming to mobile devices becomes practically feasible.Comment: To be published in IEEE Transacions on Multimedi

    A scheme for efficient peer-to-peer live video streaming over wireless mesh networks

    Get PDF
    Peers in a Peer-to-Peer (P2P) live video streaming system over hybrid wireless mesh networks (WMNs) enjoy high video quality when both random network coding (RNC) and an efficient hybrid routing protocol are employed. Although RNC is the most recently used method of efficient video streaming, it imposes high transmission overhead and decoding computational complexity on the network which reduces the perceived video quality. Besides that, RNC cannot guaranty a non-existence of linear dependency in the generated coefficients matrix. In WMNs, node mobility has not been efficiently addressed by current hybrid routing protocols that increase video distortion which would lead to low video quality. In addition, these protocols cannot efficiently support nodes which operate in infrastructure mode. Therefore, the purpose of this research is to propose a P2P live video streaming scheme which consists of two phases followed by the integration of these two phases known as the third phase to provide high video quality in hybrid WMNs. In the first phase, a novel coefficients matrix generation and inversion method has been proposed to address the mentioned limitations of RNC. In the second phase, the proposed enhanced hybrid routing protocol was used to efficiently route video streams among nodes using the most stable path with low routing overhead. Moreover, this protocol effectively supports mobility and nodes which operate in infrastructure mode by exploiting the advantages of the designed locator service. Results of simulations from the first phase showed that video distortion as the most important performance metric in live video streaming, had improved by 36 percent in comparison with current RNC method which employs the Gauss-Jordan Elimination (RNC-GJE) method in decoding. Other metrics including frame dependency distortion, initial start-up delay and end-to-end delay have also improved using the proposed method. Based on previous studies, although Reactive (DYMO) routing protocol provides better performance than other existing routing protocols in a hybrid WMN, the proposed protocol in the second phase had average improvements in video distortion of l86% for hybrid wireless mesh protocol (HWMP), 49% for Reactive (Dynamic MANET On-Demand-DYMO), 75% for Proactive (Optimized Link State Routing-OLSR), and 60% for Ad-hoc on-demand Distance Vector Spanning-Tree (AODV-ST). Other metrics including end-to-end delay, packet delay variation, routing overhead and number of delivered video frames have also improved using the proposed protocol. Finally, the third phase, an integration of the first two phases has proven to be an efficient scheme for high quality P2P live video streaming over hybrid WMNs. This video streaming scheme had averagely improved video distortion by 41%, frame dependency distortion by 50%, initial start-up delay by 15% and end-to-end delay by 33% in comparison with the average introduced values by three other considered integration cases which are Reactive and RNC-GJE, Reactive and the first phase, the second phase and RNC-GJE

    CliqueStream: an efficient and fault-resilient live streaming network on a clustered peer-to-peer overlay

    Full text link
    Several overlay-based live multimedia streaming platforms have been proposed in the recent peer-to-peer streaming literature. In most of the cases, the overlay neighbors are chosen randomly for robustness of the overlay. However, this causes nodes that are distant in terms of proximity in the underlying physical network to become neighbors, and thus data travels unnecessary distances before reaching the destination. For efficiency of bulk data transmission like multimedia streaming, the overlay neighborhood should resemble the proximity in the underlying network. In this paper, we exploit the proximity and redundancy properties of a recently proposed clique-based clustered overlay network, named eQuus, to build efficient as well as robust overlays for multimedia stream dissemination. To combine the efficiency of content pushing over tree structured overlays and the robustness of data-driven mesh overlays, higher capacity stable nodes are organized in tree structure to carry the long haul traffic and less stable nodes with intermittent presence are organized in localized meshes. The overlay construction and fault-recovery procedures are explained in details. Simulation study demonstrates the good locality properties of the platform. The outage time and control overhead induced by the failure recovery mechanism are minimal as demonstrated by the analysis.Comment: 10 page
    corecore