12,602 research outputs found

    ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ํ™˜๊ฒฝ๊ธฐ๋ฐ˜์—์„œ ์ˆ˜์น˜ ๋ชจ๋ธ๋ง๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ†ตํ•œ ์ง€๊ตฌ๊ณผํ•™ ์ž๋ฃŒ์ƒ์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2022. 8. ์กฐ์–‘๊ธฐ.To investigate changes and phenomena on Earth, many scientists use high-resolution-model results based on numerical models or develop and utilize machine learning-based prediction models with observed data. As information technology advances, there is a need for a practical methodology for generating local and global high-resolution numerical modeling and machine learning-based earth science data. This study recommends data generation and processing using high-resolution numerical models of earth science and machine learning-based prediction models in a cloud environment. To verify the reproducibility and portability of high-resolution numerical ocean model implementation on cloud computing, I simulated and analyzed the performance of a numerical ocean model at various resolutions in the model domain, including the Northwest Pacific Ocean, the East Sea, and the Yellow Sea. With the containerization method, it was possible to respond to changes in various infrastructure environments and achieve computational reproducibility effectively. The data augmentation of subsurface temperature data was performed using generative models to prepare large datasets for model training to predict the vertical temperature distribution in the ocean. To train the prediction model, data augmentation was performed using a generative model for observed data that is relatively insufficient compared to satellite dataset. In addition to observation data, HYCOM datasets were used for performance comparison, and the data distribution of augmented data was similar to the input data distribution. The ensemble method, which combines stand-alone predictive models, improved the performance of the predictive model compared to that of the model based on the existing observed data. Large amounts of computational resources were required for data synthesis, and the synthesis was performed in a cloud-based graphics processing unit environment. High-resolution numerical ocean model simulation, predictive model development, and the data generation method can improve predictive capabilities in the field of ocean science. The numerical modeling and generative models based on cloud computing used in this study can be broadly applied to various fields of earth science.์ง€๊ตฌ์˜ ๋ณ€ํ™”์™€ ํ˜„์ƒ์„ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ๊ณผํ•™์ž๋“ค์€ ์ˆ˜์น˜ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ณ ํ•ด์ƒ๋„ ๋ชจ๋ธ ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ ๊ด€์ธก๋œ ๋ฐ์ดํ„ฐ๋กœ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ํ™œ์šฉํ•œ๋‹ค. ์ •๋ณด๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ์ง€์—ญ ๋ฐ ์ „ ์ง€๊ตฌ์ ์ธ ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ๋ชจ๋ธ๋ง๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ง€๊ตฌ๊ณผํ•™ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์„ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ๋ฐฉ๋ฒ•๋ก ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ง€๊ตฌ๊ณผํ•™์˜ ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ๋ชจ๋ธ๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐ ์ฒ˜๋ฆฌ๊ฐ€ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ ํšจ๊ณผ์ ์œผ๋กœ ๊ตฌํ˜„๋  ์ˆ˜ ์žˆ์Œ์„ ์ œ์•ˆํ•œ๋‹ค. ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ…์—์„œ ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ํ•ด์–‘ ๋ชจ๋ธ ๊ตฌํ˜„์˜ ์žฌํ˜„์„ฑ๊ณผ ์ด์‹์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋ถ์„œํƒœํ‰์–‘, ๋™ํ•ด, ํ™ฉํ•ด ๋“ฑ ๋ชจ๋ธ ์˜์—ญ์˜ ๋‹ค์–‘ํ•œ ํ•ด์ƒ๋„์—์„œ ์ˆ˜์น˜ ํ•ด์–‘ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ณ  ๋ถ„์„ํ•˜์˜€๋‹ค. ์ปจํ…Œ์ด๋„ˆํ™” ๋ฐฉ์‹์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ธํ”„๋ผ ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋Œ€์‘ํ•˜๊ณ  ๊ณ„์‚ฐ ์žฌํ˜„์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์˜ ์ ์šฉ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ƒ์„ฑ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ํ‘œ์ธต ์ดํ•˜ ์˜จ๋„ ๋ฐ์ดํ„ฐ์˜ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์‹คํ–‰ํ•˜์—ฌ ํ•ด์–‘์˜ ์ˆ˜์ง ์˜จ๋„ ๋ถ„ํฌ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ ํ›ˆ๋ จ์„ ์œ„ํ•œ ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ค€๋น„ํ–ˆ๋‹ค. ์˜ˆ์ธก๋ชจ๋ธ ํ›ˆ๋ จ์„ ์œ„ํ•ด ์œ„์„ฑ ๋ฐ์ดํ„ฐ์— ๋น„ํ•ด ์ƒ๋Œ€์ ์œผ๋กœ ๋ถ€์กฑํ•œ ๊ด€์ธก ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ ์ƒ์„ฑ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ชจ๋ธ์˜ ์˜ˆ์ธก์„ฑ๋Šฅ ๋น„๊ต์—๋Š” ๊ด€์ธก ๋ฐ์ดํ„ฐ ์™ธ์—๋„ HYCOM ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ์˜ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์™€ ์œ ์‚ฌํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋…๋ฆฝํ˜• ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•œ ์•™์ƒ๋ธ” ๋ฐฉ์‹์€ ๊ธฐ์กด ๊ด€์ธก ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์— ๋น„ํ•ด ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ๋ฐ์ดํ„ฐํ•ฉ์„ฑ์„ ์œ„ํ•ด ๋งŽ์€ ์–‘์˜ ๊ณ„์‚ฐ ์ž์›์ด ํ•„์š”ํ–ˆ์œผ๋ฉฐ, ๋ฐ์ดํ„ฐ ํ•ฉ์„ฑ์€ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ GPU ํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ํ•ด์–‘ ๋ชจ๋ธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ, ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐฉ๋ฒ•์€ ํ•ด์–‘ ๊ณผํ•™ ๋ถ„์•ผ์—์„œ ์˜ˆ์ธก ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ๊ธฐ๋ฐ˜์˜ ์ˆ˜์น˜ ๋ชจ๋ธ๋ง ๋ฐ ์ƒ์„ฑ ๋ชจ๋ธ์€ ์ง€๊ตฌ ๊ณผํ•™์˜ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.1. General Introduction 1 2. Performance of numerical ocean modeling on cloud computing 6 2.1. Introduction 6 2.2. Cloud Computing 9 2.2.1. Cloud computing overview 9 2.2.2. Commercial cloud computing services 12 2.3. Numerical model for performance analysis of commercial clouds 15 2.3.1. High Performance Linpack Benchmark 15 2.3.2. Benchmark Sustainable Memory Bandwidth and Memory Latency 16 2.3.3. Numerical Ocean Model 16 2.3.4. Deployment of Numerical Ocean Model and Benchmark Packages on Cloud Clusters 19 2.4. Simulation results 21 2.4.1. Benchmark simulation 21 2.4.2. Ocean model simulation 24 2.5. Analysis of ROMS performance on commercial clouds 26 2.5.1. Performance of ROMS according to H/W resources 26 2.5.2. Performance of ROMS according to grid size 34 2.6. Summary 41 3. Reproducibility of numerical ocean model on the cloud computing 44 3.1. Introduction 44 3.2. Containerization of numerical ocean model 47 3.2.1. Container virtualization 47 3.2.2. Container-based architecture for HPC 49 3.2.3. Container-based architecture for hybrid cloud 53 3.3. Materials and Methods 55 3.3.1. Comparison of traditional and container based HPC cluster workflows 55 3.3.2. Model domain and datasets for numerical simulation 57 3.3.3. Building the container image and registration in the repository 59 3.3.4. Configuring a numeric model execution cluster 64 3.4. Results and Discussion 74 3.4.1. Reproducibility 74 3.4.2. Portability and Performance 76 3.5. Conclusions 81 4. Generative models for the prediction of ocean temperature profile 84 4.1. Introduction 84 4.2. Materials and Methods 87 4.2.1. Model domain and datasets for predicting the subsurface temperature 87 4.2.2. Model architecture for predicting the subsurface temperature 90 4.2.3. Neural network generative models 91 4.2.4. Prediction Models 97 4.2.5. Accuracy 103 4.3. Results and Discussion 104 4.3.1. Data Generation 104 4.3.2. Ensemble Prediction 109 4.3.3. Limitations of this study and future works 111 4.4. Conclusion 111 5. Summary and conclusion 114 6. References 118 7. Abstract (in Korean) 140๋ฐ•

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Seasonal predictions of energy-relevant climate variables through Euro-Atlantic Teleconnections

    Get PDF
    The goal of this analysis is the better understanding of how the large-scale atmospheric patterns affect the renewable resources over Europe and to investigate to what extent the dynamical predictions of the large-scale variability might be used to formulate empirical prediction of local climate conditions (relevant for the energy sector). The increasing integration of renewable energy into the power mix is making the electricity supply more vulnerable to climate variability, therefore increasing the need for skillful weather and climate predictions. Forecasting seasonal variations of energy relevant climate variables can help the transition to renewable energy and the entire energy industry to make better informed decision-making. At seasonal timescale climate variability can be described by recurring and persistent, large-scale patterns of atmospheric pressure and circulation anomalies that interest vast geographical areas. The main patterns of the North Atlantic region (Euro Atlantic Teleconnections, EATCs) drive variations in the surface climate over Europe. We analyze reanalysis dataset ERA5 and the multi-system seasonal forecast service provided by Copernicus Climate Change Service (C3S). We found that the observed EATC indices are strongly correlated with surface variables. However, the observed relationship between EATC patterns and surface impacts is not accurately reproduced by seasonal prediction systems. This opens the door to employ hybrid dynamical-statistical methods. The idea consists in combining the dynamical seasonal predictions of EATC indices with the observed relationship between EATCs and surface variables. We reconstructed the surface anomalies for multiple seasonal prediction systems and benchmarked these hybrid forecasts with the direct variable forecasts from the systems and also with the climatology. The analysis suggests that hybrid methodology can bring several improvements to the predictions of energy relevant Essential Climate Variables.This work was supported by the European Unionโ€™s Horizon 2020 research and innovation programme [Grant Numbers. No 776787, H2020 S2S4E] and by the National Italian project PAR 2019โ€“2021 1.8 โ€˜Energia dal Mareโ€™.Peer ReviewedPostprint (published version

    Integrating Deep Learning and Hydrodynamic Modeling to Improve the Great Lakes Forecast

    Get PDF
    The Laurentian Great Lakes, one of the worldโ€™s largest surface freshwater systems, pose a modeling challenge in seasonal forecast and climate projection. While physics-based hydrodynamic modeling is a fundamental approach, improving the forecast accuracy remains critical. In recent years, machine learning (ML) has quickly emerged in geoscience applications, but its application to the Great Lakes hydrodynamic prediction is still in its early stages. This work is the first one to explore a deep learning approach to predicting spatiotemporal distributions of the lake surface temperature (LST) in the Great Lakes. Our study shows that the Long Short-Term Memory (LSTM) neural network, trained with the limited data from hypothetical monitoring networks, can provide consistent and robust performance. The LSTM prediction captured the LST spatiotemporal variabilities across the five Great Lakes well, suggesting an effective and efficient way for monitoring network design in assisting the ML-based forecast. Furthermore, we employed an explainable artificial intelligence (XAI) technique named SHapley Additive exPlanations (SHAP) to uncover how the features impact the LSTM prediction. Our XAI analysis shows air temperature is the most influential feature for predicting LST in the trained LSTM. The relatively large bias in the LSTM prediction during the spring and fall was associated with substantial heterogeneity of air temperature during the two seasons. In contrast, the physics-based hydrodynamic model performed better in spring and fall yet exhibited relatively large biases during the summer stratification period. Finally, we developed a statistical integration of the hydrodynamic modeling and deep learning results based on the Best Linear Unbiased Estimator (BLUE). The integration further enhanced prediction accuracy, suggesting its potential for next-generation Great Lakes forecast systems

    Integrating Deep Learning and Hydrodynamic Modeling to Improve the Great Lakes Forecast

    Get PDF
    The Laurentian Great Lakes, one of the worldโ€™s largest surface freshwater systems, pose a modeling challenge in seasonal forecast and climate projection. While physics-based hydrodynamic modeling is a fundamental approach, improving the forecast accuracy remains critical. In recent years, machine learning (ML) has quickly emerged in geoscience applications, but its application to the Great Lakes hydrodynamic prediction is still in its early stages. This work is the first one to explore a deep learning approach to predicting spatiotemporal distributions of the lake surface temperature (LST) in the Great Lakes. Our study shows that the Long Short-Term Memory (LSTM) neural network, trained with the limited data from hypothetical monitoring networks, can provide consistent and robust performance. The LSTM prediction captured the LST spatiotemporal variabilities across the five Great Lakes well, suggesting an effective and efficient way for monitoring network design in assisting the ML-based forecast. Furthermore, we employed an explainable artificial intelligence (XAI) technique named SHapley Additive exPlanations (SHAP) to uncover how the features impact the LSTM prediction. Our XAI analysis shows air temperature is the most influential feature for predicting LST in the trained LSTM. The relatively large bias in the LSTM prediction during the spring and fall was associated with substantial heterogeneity of air temperature during the two seasons. In contrast, the physics-based hydrodynamic model performed better in spring and fall yet exhibited relatively large biases during the summer stratification period. Finally, we developed a statistical integration of the hydrodynamic modeling and deep learning results based on the Best Linear Unbiased Estimator (BLUE). The integration further enhanced prediction accuracy, suggesting its potential for next-generation Great Lakes forecast systems

    Review and assessment of latent and sensible heat flux accuracy over the global oceans

    Get PDF
    For over a decade, several research groups have been developing air-sea heat flux information over the global ocean, including latent (LHF) and sensible (SHF) heat fluxes over the global ocean. This paper aims to provide new insight into the quality and error characteristics of turbulent heat flux estimates at various spatial and temporal scales (from daily upwards). The study is performed within the European Space Agency (ESA) Ocean Heat Flux (OHF) project. One of the main objectives of the OHF project is to meet the recommendations and requirements expressed by various international programs such as the World Research Climate Program (WCRP) and Climate and Ocean Variability, Predictability, and Change (CLIVAR), recognizing the need for better characterization of existing flux errors with respect to the input bulk variables (e.g. surface wind, air and sea surface temperatures, air and surface specific humidities), and to the atmospheric and oceanic conditions (e.g. wind conditions and sea state). The analysis is based on the use of daily averaged LHF and SHF and the asso- ciated bulk variables derived from major satellite-based and atmospheric reanalysis products. Inter-comparisons of heat flux products indicate that all of them exhibit similar space and time patterns. However, they also reveal significant differences in magnitude in some specific regions such as the western ocean boundaries during the Northern Hemisphere winter season, and the high southern latitudes. The differences tend to be closely related to large differences in surface wind speed and/or specific air humidity (for LHF) and to air and sea temperature differences (for SHF). Further quality investigations are performed through comprehensive comparisons with daily-averaged LHF and SHF estimated from moorings. The resulting statistics are used to assess the error of each OHF product. Consideration of error correlation between products and observations (e.g., by their assimilation) is also given. This reveals generally high noise variance in all products and a weak signal in common with in situ observations, with some products only slightly better than others. The OHF LHF and SHF products, and their associated error characteristics, are used to compute daily OHF multiproduct-ensemble (OHF/MPE) estimates of LHF and SHF over the ice-free global ocean on a 0.25ยฐ ร— 0.25ยฐ grid. The accuracy of this heat multiproduct, determined from comparisons with mooring data, is greater than for any individual product. It is used as a reference for the anomaly characterization of each individual OHF product

    Senior Thesis ST 2011-02

    Get PDF
    Agriculture in the Arctic is often limited by the low receipt of heat energy, which is often measured in growing degree days (GDD). With the advent of increasingly powerful climate modeling, projection and downscaling techniques, it is becoming possible to examine future climates in high resolution. Recent availability in Alaska has prompted interest in examining the distribution of current and the potential future of local agriculture. The goal of this study was to utilize Scenarios Network for Alaska Planning (SNAP) downscaled, ensemble projections to examine this in terms of GDDs in the Fairbanks North Star Borough of Alaska. Historic and projected monthly mean temperatures were utilized to calculate GDDs and then map the borough at a 4 km2 scale. Additionally, local agriculturalists were interviewed in order to put these theoretical calculations into context. Ultimately, projections of the examined agricultural locations showed an average of a 2% increase in GDD per decade and a 26% increase in GDDs from 1949 to 2099. This project indicated that the North Star Borough will receive increased heat energy due to climate change over the next century that may further enable increased yields and varieties of crops

    Feasibility study on manganese nodules recovery in the Clarion-Clipperton Zone

    No full text
    The sea occupies three quarters of the area on the earth and provides various kinds of resources to mankind in the form of minerals, food, medicines and even energy. โ€œSeabed exploitationโ€ specifically deals with recovery of the resources that are found on the seabed, in the form of solids, liquids and gasses (methane hydrates, oil and natural gas). The resources are abundant; nevertheless the recovery process from the seabed, poses various challenges to mankind. This study starts with a review on three types of resources: polymetallic manganese nodules, polymetallic manganese crusts and massive sulphides deposits. Each of them are rich in minerals, such as manganese, cobalt, nickel, copper and some rare earth elements. They are found at many locations in the deep seas and are potentially a big source of minerals. No commercial seabed mining activity has been accomplished to date due to the great complexities in recovery. This book describes the various challenges associated with a potential underwater mineral recovery operation, reviews and analyses the existing recovery techniques, and provides an innovative engineering system. It further identifies the associated risks and a suitable business model.Chapter 1 presents a brief background about the past and present industrial trends of seabed mining. A description of the sea, seabed and the three types of seabed mineral resources are also included. A section on motivations for deep sea mining follows which also compares the latter with terrestrial mining.Chapter 2 deals with the decision making process, including a market analysis, for selecting manganese nodules as the resource of interest. This is followed by a case study specific to the location of interest: West COMRA in the Clarion-Clipperton Zone. Specific site location is determined in order to estimate commercial risk, environmental impact assessment and logistic challenge.Chapter 3 lists the existing techniques for nodule recovery operation. The study identifies the main components of a nodules recovery system, and organizes them into: collector, propulsion and vertical transport systems.Chapter 4 discusses various challenges posed by manganese nodules recovery, in terms of the engineering and environment. The geo-political and legal-social issues have also been considered. This chapter plays an important role in defining the proposed engineering system, as addressing the identified challenges will better shape the proposed solution.Chapter 5 proposes an engineering system, by considering the key components in greater details. An innovative component, the black box is introduced, which is intended to be an environmentally-friendly solution for manganese nodules recovery. Other auxiliary components, such as the mother ship and metallurgical processing, are briefly included. A brief power supply analysis is also provided.Chapter 6 assesses the associated risks, which are divided into sections namely commercial viability, logistic challenges, environmental impact assessment and safety assessment. The feasibility of the proposed solution is also dealt with.Chapter 7 provides a business model for the proposed engineering system. Potential customers are identified, value proposition is determined, costumer relation is also suggested. Public awareness is then discussed and finally a SWOT analysis is presented. This business model serves as an important bridge to reach both industry and research institutes.Finally, Chapter 8 provides some conclusions and recommendation for future work

    On the Structure of the Lower Troposphere in the Summertime Stratocumulus Regime of the Northeast Pacific

    Get PDF
    Data collected in situ as part of the second field study of the Dynamics and Chemistry of Marine Stratocumulus field program are used to evaluate the state of the atmosphere in the region of field operations near 30ยฐN, 120ยฐW during July 2001, as well as its representation by a variety of routinely available data. The routine data include both the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEPโ€“NCAR reanalyses, forecasts from their respective forecast systems (the Integrated and Global Forecast Systems), the 30-km archive from the International Satellite Cloud Climatology Project (ISCCP), the Quick Scatterometer surface winds, and remotely sensed fields derived from radiances measured by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), the Advanced Microwave Sounding Unit, and the Advanced Very High Resolution Radiometer. The analysis shows that outside of the boundary layer the state of the lower troposphere is reasonably represented by the reanalysis and forecast products, with the caveat of a slight warm bias at 850 hPa in the NCEPโ€“NCAR products. Within the planetary boundary layer (PBL) the agreement is not as good: both the boundary layer depth and cloud amount are underpredicted, and the boundary layer temperature correlates poorly with the available data, which may be related to a poor representation of SSTs in this region of persistent cloud cover. ERA-40 also suffers from persistently weak zonal winds within the PBL. Among the satellite records the ISCCP data are found to be especially valuable, evincing skill in both predicting boundary layer depth (from cloud-top temperatures and TMI surface temperatures) and cloud liquid water paths (from cloud optical depths). An analysis of interannual variability (among Julys) based on ERA-40 and the 1983โ€“2001 ISCCP record suggests that thermodynamic quantities show similar interannual and synoptic variability, principally concentrated just above the PBL, while dynamic quantities vary much more on synoptic time scales. Furthermore, the analysis suggests that the correlation between stratocumulus cloud amount and lower-tropospheric stability exhibits considerable spatial structure and is less pronounced than previously thought

    Spatial-Temporal Data Mining for Ocean Science: Data, Methodologies, and Opportunities

    Full text link
    With the increasing amount of spatial-temporal~(ST) ocean data, numerous spatial-temporal data mining (STDM) studies have been conducted to address various oceanic issues, e.g., climate forecasting and disaster warning. Compared with typical ST data (e.g., traffic data), ST ocean data is more complicated with some unique characteristics, e.g., diverse regionality and high sparsity. These characteristics make it difficult to design and train STDM models. Unfortunately, an overview of these studies is still missing, hindering computer scientists to identify the research issues in ocean while discouraging researchers in ocean science from applying advanced STDM techniques. To remedy this situation, we provide a comprehensive survey to summarize existing STDM studies in ocean. Concretely, we first summarize the widely-used ST ocean datasets and identify their unique characteristics. Then, typical ST ocean data quality enhancement techniques are discussed. Next, we classify existing STDM studies for ocean into four types of tasks, i.e., prediction, event detection, pattern mining, and anomaly detection, and elaborate the techniques for these tasks. Finally, promising research opportunities are highlighted. This survey will help scientists from the fields of both computer science and ocean science have a better understanding of the fundamental concepts, key techniques, and open challenges of STDM in ocean
    • โ€ฆ
    corecore