11,648 research outputs found

    Main Memory Adaptive Indexing for Multi-core Systems

    Full text link
    Adaptive indexing is a concept that considers index creation in databases as a by-product of query processing; as opposed to traditional full index creation where the indexing effort is performed up front before answering any queries. Adaptive indexing has received a considerable amount of attention, and several algorithms have been proposed over the past few years; including a recent experimental study comparing a large number of existing methods. Until now, however, most adaptive indexing algorithms have been designed single-threaded, yet with multi-core systems already well established, the idea of designing parallel algorithms for adaptive indexing is very natural. In this regard only one parallel algorithm for adaptive indexing has recently appeared in the literature: The parallel version of standard cracking. In this paper we describe three alternative parallel algorithms for adaptive indexing, including a second variant of a parallel standard cracking algorithm. Additionally, we describe a hybrid parallel sorting algorithm, and a NUMA-aware method based on sorting. We then thoroughly compare all these algorithms experimentally; along a variant of a recently published parallel version of radix sort. Parallel sorting algorithms serve as a realistic baseline for multi-threaded adaptive indexing techniques. In total we experimentally compare seven parallel algorithms. Additionally, we extensively profile all considered algorithms. The initial set of experiments considered in this paper indicates that our parallel algorithms significantly improve over previously known ones. Our results suggest that, although adaptive indexing algorithms are a good design choice in single-threaded environments, the rules change considerably in the parallel case. That is, in future highly-parallel environments, sorting algorithms could be serious alternatives to adaptive indexing.Comment: 26 pages, 7 figure

    Resource sharing and hybrid libraries: the MALIBU Project

    Get PDF
    The British electronic libraries programme has funded four projects to develop thinking on so-called hybrid libraries and one of these is MALIBU (Modernising Academic Libraries in British Universities), based at King's College London. Working with the libraries of Oxford and Southampton Universities it will take a very rich set of humanities resources from archives and incunabula to digital products and networked resources and create a seamless single access point to all the available resources. It will also explore how strategies can be developed to make resources available locally as operational services rather than unreliably over the Internet. It does not set out to create its own new tools but rather to find ways of integrating tools already in existence or being developed

    Practical Sparse Matrices in C++ with Hybrid Storage and Template-Based Expression Optimisation

    Get PDF
    Despite the importance of sparse matrices in numerous fields of science, software implementations remain difficult to use for non-expert users, generally requiring the understanding of underlying details of the chosen sparse matrix storage format. In addition, to achieve good performance, several formats may need to be used in one program, requiring explicit selection and conversion between the formats. This can be both tedious and error-prone, especially for non-expert users. Motivated by these issues, we present a user-friendly and open-source sparse matrix class for the C++ language, with a high-level application programming interface deliberately similar to the widely used MATLAB language. This facilitates prototyping directly in C++ and aids the conversion of research code into production environments. The class internally uses two main approaches to achieve efficient execution: (i) a hybrid storage framework, which automatically and seamlessly switches between three underlying storage formats (compressed sparse column, Red-Black tree, coordinate list) depending on which format is best suited and/or available for specific operations, and (ii) a template-based meta-programming framework to automatically detect and optimise execution of common expression patterns. Empirical evaluations on large sparse matrices with various densities of non-zero elements demonstrate the advantages of the hybrid storage framework and the expression optimisation mechanism.Comment: extended and revised version of an earlier conference paper arXiv:1805.0338

    Practical Sparse Matrices in C++ with Hybrid Storage and Template-Based Expression Optimisation

    Get PDF
    Despite the importance of sparse matrices in numerous fields of science, software implementations remain difficult to use for non-expert users, generally requiring the understanding of underlying details of the chosen sparse matrix storage format. In addition, to achieve good performance, several formats may need to be used in one program, requiring explicit selection and conversion between the formats. This can be both tedious and error-prone, especially for non-expert users. Motivated by these issues, we present a user-friendly and open-source sparse matrix class for the C++ language, with a high-level application programming interface deliberately similar to the widely used MATLAB language. This facilitates prototyping directly in C++ and aids the conversion of research code into production environments. The class internally uses two main approaches to achieve efficient execution: (i) a hybrid storage framework, which automatically and seamlessly switches between three underlying storage formats (compressed sparse column, Red-Black tree, coordinate list) depending on which format is best suited and/or available for specific operations, and (ii) a template-based meta-programming framework to automatically detect and optimise execution of common expression patterns. Empirical evaluations on large sparse matrices with various densities of non-zero elements demonstrate the advantages of the hybrid storage framework and the expression optimisation mechanism.Comment: extended and revised version of an earlier conference paper arXiv:1805.0338

    Machine Learning of User Profiles: Representational Issues

    Full text link
    As more information becomes available electronically, tools for finding information of interest to users becomes increasingly important. The goal of the research described here is to build a system for generating comprehensible user profiles that accurately capture user interest with minimum user interaction. The research described here focuses on the importance of a suitable generalization hierarchy and representation for learning profiles which are predictively accurate and comprehensible. In our experiments we evaluated both traditional features based on weighted term vectors as well as subject features corresponding to categories which could be drawn from a thesaurus. Our experiments, conducted in the context of a content-based profiling system for on-line newspapers on the World Wide Web (the IDD News Browser), demonstrate the importance of a generalization hierarchy and the promise of combining natural language processing techniques with machine learning (ML) to address an information retrieval (IR) problem.Comment: 6 page
    • …
    corecore