949 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Tiny Machine Learning Environment: Enabling Intelligence on Constrained Devices

    Get PDF
    Running machine learning algorithms (ML) on constrained devices at the extreme edge of the network is problematic due to the computational overhead of ML algorithms, available resources on the embedded platform, and application budget (i.e., real-time requirements, power constraints, etc.). This required the development of specific solutions and development tools for what is now referred to as TinyML. In this dissertation, we focus on improving the deployment and performance of TinyML applications, taking into consideration the aforementioned challenges, especially memory requirements. This dissertation contributed to the construction of the Edge Learning Machine environment (ELM), a platform-independent open-source framework that provides three main TinyML services, namely shallow ML, self-supervised ML, and binary deep learning on constrained devices. In this context, this work includes the following steps, which are reflected in the thesis structure. First, we present the performance analysis of state-of-the-art shallow ML algorithms including dense neural networks, implemented on mainstream microcontrollers. The comprehensive analysis in terms of algorithms, hardware platforms, datasets, preprocessing techniques, and configurations shows similar performance results compared to a desktop machine and highlights the impact of these factors on overall performance. Second, despite the assumption that TinyML only permits models inference provided by the scarcity of resources, we have gone a step further and enabled self-supervised on-device training on microcontrollers and tiny IoT devices by developing the Autonomous Edge Pipeline (AEP) system. AEP achieves comparable accuracy compared to the typical TinyML paradigm, i.e., models trained on resource-abundant devices and then deployed on microcontrollers. Next, we present the development of a memory allocation strategy for convolutional neural networks (CNNs) layers, that optimizes memory requirements. This approach reduces the memory footprint without affecting accuracy nor latency. Moreover, e-skin systems share the main requirements of the TinyML fields: enabling intelligence with low memory, low power consumption, and low latency. Therefore, we designed an efficient Tiny CNN architecture for e-skin applications. The architecture leverages the memory allocation strategy presented earlier and provides better performance than existing solutions. A major contribution of the thesis is given by CBin-NN, a library of functions for implementing extremely efficient binary neural networks on constrained devices. The library outperforms state of the art NN deployment solutions by drastically reducing memory footprint and inference latency. All the solutions proposed in this thesis have been implemented on representative devices and tested in relevant applications, of which results are reported and discussed. The ELM framework is open source, and this work is clearly becoming a useful, versatile toolkit for the IoT and TinyML research and development community

    Informing Sustainable Standards in 'The Circular Economy' utilising technological and data solutions

    Get PDF
    In our world of make, use and throw away we are now doing more damage to the planet than good, and this mindset has become unsustainable. One of the solutions to this problem is the ‘Circular Economy’ (CE). The CE replaces the concept of end-of-life production with restoration of natural systems, innovative design to design out waste and keeping products and materials in circulation for as long as possible. This research will use data science and statistical information to provide a solid foundation (framework) for standards developers to frame the development of standards for the CE. The research will extend the current CE model by interjecting innovative ideas into areas of the CE process: data analysis, restriction of harmful chemicals removing them from the supply chain, research into Local Value Creation (LVC) and research into Sustainable Development in the CE. The research will investigate how Radio Frequency Identification (RFID) tagging of products and materials provide a realistic way to trace products and materials in a CE management system. It will also expand the knowledge on digitization in standards development by analyzing key data streams connected to the CE in order to inform the standards development community of the need to develop a standard on the CE. This research will use a mixed methodology by combining quantitative methods (data analysis) and qualitative data (case studies). This will be detailed in Chapter 3 – Methodology. The data collected from the literature review will drive four main Sections and four research questions in Chapter 4. This research will analyse through Case Studies and research papers the uptake of circular thinking in China and the Ellen MacArthur Foundation and use the outcomes positive or negative to show practical applications for this research.The objective conclusion of this research is to provide a framework for a European or International standard in order to fill the gap as no such Standard currently exists European or Internationally that addresses the CE. A Framework with inclusions from the research will form a usable output from the research. This research will inform or be of interest to the Standards development community, data scientists, Circular Economy practitioners and environmental regulators. The aim of this research is to provide a framework standard using underlying data and statistical information needed to develop a new Standard on the Circular Economy. Once a Standard is developed and published it can be used by any organisation or group of organisations, country or individual wishing to manage internally and collectively their activities in order to transition to the CE and the Sustainable Development goal of responsible consumption and production. This research has produced a framework from which sustainable standards can be developed. The data acquired from using RFID tags imbedded in products allows manufacturers to control and analyse the materials in their products specific to hazardous chemicals. This data can also be used to track the product through the supply chain and onto its product life cycle. The data gathered in the product example in this thesis tracks the potential use of hazardous chemicals in the product, this is important information for endof-life decisions to be made on the product. The data can then be used to develop requirements and testing regimes for circular economy standards. Having identified some of the main areas of future activity in the CE, this research i.e., the circular economy, data science and standards development will continue to evoke research in the CE for the foreseeable future

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Survey of Vector Database Management Systems

    Full text link
    There are now over 20 commercial vector database management systems (VDBMSs), all produced within the past five years. But embedding-based retrieval has been studied for over ten years, and similarity search a staggering half century and more. Driving this shift from algorithms to systems are new data intensive applications, notably large language models, that demand vast stores of unstructured data coupled with reliable, secure, fast, and scalable query processing capability. A variety of new data management techniques now exist for addressing these needs, however there is no comprehensive survey to thoroughly review these techniques and systems. We start by identifying five main obstacles to vector data management, namely vagueness of semantic similarity, large size of vectors, high cost of similarity comparison, lack of natural partitioning that can be used for indexing, and difficulty of efficiently answering hybrid queries that require both attributes and vectors. Overcoming these obstacles has led to new approaches to query processing, storage and indexing, and query optimization and execution. For query processing, a variety of similarity scores and query types are now well understood; for storage and indexing, techniques include vector compression, namely quantization, and partitioning based on randomization, learning partitioning, and navigable partitioning; for query optimization and execution, we describe new operators for hybrid queries, as well as techniques for plan enumeration, plan selection, and hardware accelerated execution. These techniques lead to a variety of VDBMSs across a spectrum of design and runtime characteristics, including native systems specialized for vectors and extended systems that incorporate vector capabilities into existing systems. We then discuss benchmarks, and finally we outline research challenges and point the direction for future work.Comment: 25 page

    Framing Apache Spark in life sciences

    Get PDF
    Advances in high-throughput and digital technologies have required the adoption of big data for handling complex tasks in life sciences. However, the drift to big data led researchers to face technical and infrastructural challenges for storing, sharing, and analysing them. In fact, this kind of tasks requires distributed computing systems and algorithms able to ensure efficient processing. Cutting edge distributed programming frameworks allow to implement flexible algorithms able to adapt the computation to the data over on-premise HPC clusters or cloud architectures. In this context, Apache Spark is a very powerful HPC engine for large-scale data processing on clusters. Also thanks to specialised libraries for working with structured and relational data, it allows to support machine learning, graph-based computation, and stream processing. This review article is aimed at helping life sciences researchers to ascertain the features of Apache Spark and to assess whether it can be successfully used in their research activities

    Efficient and Side-Channel Resistant Implementations of Next-Generation Cryptography

    Get PDF
    The rapid development of emerging information technologies, such as quantum computing and the Internet of Things (IoT), will have or have already had a huge impact on the world. These technologies can not only improve industrial productivity but they could also bring more convenience to people’s daily lives. However, these techniques have “side effects” in the world of cryptography – they pose new difficulties and challenges from theory to practice. Specifically, when quantum computing capability (i.e., logical qubits) reaches a certain level, Shor’s algorithm will be able to break almost all public-key cryptosystems currently in use. On the other hand, a great number of devices deployed in IoT environments have very constrained computing and storage resources, so the current widely-used cryptographic algorithms may not run efficiently on those devices. A new generation of cryptography has thus emerged, including Post-Quantum Cryptography (PQC), which remains secure under both classical and quantum attacks, and LightWeight Cryptography (LWC), which is tailored for resource-constrained devices. Research on next-generation cryptography is of importance and utmost urgency, and the US National Institute of Standards and Technology in particular has initiated the standardization process for PQC and LWC in 2016 and in 2018 respectively. Since next-generation cryptography is in a premature state and has developed rapidly in recent years, its theoretical security and practical deployment are not very well explored and are in significant need of evaluation. This thesis aims to look into the engineering aspects of next-generation cryptography, i.e., the problems concerning implementation efficiency (e.g., execution time and memory consumption) and security (e.g., countermeasures against timing attacks and power side-channel attacks). In more detail, we first explore efficient software implementation approaches for lattice-based PQC on constrained devices. Then, we study how to speed up isogeny-based PQC on modern high-performance processors especially by using their powerful vector units. Moreover, we research how to design sophisticated yet low-area instruction set extensions to further accelerate software implementations of LWC and long-integer-arithmetic-based PQC. Finally, to address the threats from potential power side-channel attacks, we present a concept of using special leakage-aware instructions to eliminate overwriting leakage for masked software implementations (of next-generation cryptography)

    GraphflowDB: Scalable Query Processing on Graph-Structured Relations

    Get PDF
    Finding patterns over graph-structured datasets is ubiquitous and integral to a wide range of analytical applications, e.g., recommendation and fraud detection. When expressed in the high-level query languages of database management systems (DBMSs), these patterns correspond to many-to-many join computations, which generate very large intermediate relations during query processing and degrade the performance of existing systems. This thesis argues that modern query processors need to adopt two novel techniques to be efficient on growing many-to-many joins: (i) worst-case optimal join algorithms; and (ii) factorized representations. Traditional query processors generate join plans that use binary joins, which in iteration take two relations, base or intermediate, to join and produce a new relation. The theory of worst-case optimal joins have shown that this style of join processing can be provably suboptimal and hence generate unnecessarily large intermediate results. This can be avoided on cyclic join queries if the join is performed in a multi-way fashion a join-attribute-at-a-time. As its first contribution, this thesis proposes the design and implementation of a query processor and optimizer that can generate plans that mix worst-case optimal joins, i.e., attribute-at-a-time joins and binary joins, i.e., table-at-a-time joins. In contrast to prior approaches with novel join optimizers that require solving hard computational problems, such as computing low-width hypertree decompositions of queries, our join optimizer is cost-based and uses a traditional dynamic programming approach with a new cost metric. On acyclic queries, or acyclic parts of queries, sometimes the generation of large intermediate results cannot be avoided. Yet, the theory of factorization has shown that often such intermediate results can be highly compressible if they contain multi-valued dependencies between join attributes. Factorization proposes two relation representation schemes, called f- and d-representations, to represent the large intermediate results generated under many-to-many joins in a compressed format. Existing proposals to adopt factorized representations require designing processing on fully materialized general tries and novel operators that operate on entire tries, which are not easy to adopt in existing systems. As a second contribution, we describe the implementation of a novel query processing approach we call factorized vector execution that adopts f-representations. Factorized vector execution extends the traditional vectorized query processors to use multiple blocks of vectors instead of a single block allowing us to factorize intermediate results and delay or even avoid Cartesian products. Importantly, our design ensures that every core operator in the system still performs computations on vectors. As a third contribution, we further describe how to extend our factorized vector execution model with novel operators to adopt d-representations, which extend f-representations with cached and reused sub-relations. Our design here is based on using nested hash tables that can point to sub-relations instead of copying them and on directed acyclic graph-based query plans. All of our techniques are implemented in the GraphflowDB system, which was developed throughout the years to facilitate the research in this thesis. We demonstrate that GraphflowDB’s query processor can outperform existing approaches and systems by orders of magnitude on both micro-benchmarks and end-to-end benchmarks. The designs proposed in this thesis adopt common-wisdom query processing techniques of pipelining, vector-based execution, and morsel-driven parallelism to ensure easy adoption in existing systems. We believe the design can serve as a blueprint for how to adopt these techniques in existing DBMSs to make them more efficient on workloads with many-to-many joins

    Persistent Memory File Systems:A Survey

    Get PDF
    Persistent Memory (PM) is non-volatile byte-addressable memory that offers read and write latencies in the order of magnitude smaller than flash storage, such as SSDs. This survey discusses how file systems address the most prominent challenges in the implementation of file systems for Persistent Memory. First, we discuss how the properties of Persistent Memory change file system design. Second, we discuss work that aims to optimize small file I/O and the associated meta-data resolution. Third, we address how existing Persistent Memory file systems achieve (meta) data persistence and consistency
    • 

    corecore