111 research outputs found

    Shift rostering using decomposition: assign weekend shifts first

    Get PDF
    This paper introduces a shift rostering problem that surprisingly has not been studied in literature: the weekend shift rostering problem. It is motivated by our experience that employees’ shift preferences predominantly focus on the weekends, since many social activities happen during weekends. The Weekend Rostering Problem (WRP) addresses the rostering of weekend shifts, for which we design a problem specific heuristic. We consider the WRP as the first phase of the shift rostering problem. To complete the shift roster, the second phase assigns the weekday shifts using an existing algorithm. We discuss effects of this two-phase approach both on the weekend shift roster and on the roster as a whole. We demonstrate that our first-phase heuristic is effective both on generated instances and real-life instances. For situations where the weekend shift roster is one of the key determinants of the quality of the complete roster, our two-phase approach shows to be effective when incorporated in a commercially implemented algorithm

    A harmony search algorithm for nurse rostering problems

    Get PDF
    Harmony search algorithm (HSA) is a relatively new nature-inspired algorithm. It evolves solutions in the problem search space by mimicking the musical improvisation process in seeking agreeable harmony measured by aesthetic standards. The nurse rostering problem (NRP) is a well-known NP-hard scheduling problem that aims at allocating the required workload to the available staff nurses at healthcare organizations to meet the operational requirements and a range of preferences. This work investigates research issues of the parameter settings in HSA and application of HSA to effectively solve complex NRPs. Due to the well-known fact that most NRPs algorithms are highly problem (or even instance) dependent, the performance of our proposed HSA is evaluated on two sets of very different nurse rostering problems. The first set represents a real world dataset obtained from a large hospital in Malaysia. Experimental results show that our proposed HSA produces better quality rosters for all considered instances than a genetic algorithm (implemented herein). The second is a set of well-known benchmark NRPs which are widely used by researchers in the literature. The proposed HSA obtains good results (and new lower bound for a few instances) when compared to the current state of the art of meta-heuristic algorithms in recent literature

    A novel population-based local search for nurse rostering problem

    Get PDF
    Population-based approaches regularly are better than single based (local search) approaches in exploring the search space. However, the drawback of population-based approaches is in exploiting the search space. Several hybrid approaches have proven their efficiency through different domains of optimization problems by incorporating and integrating the strength of population and local search approaches. Meanwhile, hybrid methods have a drawback of increasing the parameter tuning. Recently, population-based local search was proposed for a university course-timetabling problem with fewer parameters than existing approaches, the proposed approach proves its effectiveness. The proposed approach employs two operators to intensify and diversify the search space. The first operator is applied to a single solution, while the second is applied for all solutions. This paper aims to investigate the performance of population-based local search for the nurse rostering problem. The INRC2010 database with a dataset composed of 69 instances is used to test the performance of PB-LS. A comparison was made between the performance of PB-LS and other existing approaches in the literature. Results show good performances of proposed approach compared to other approaches, where population-based local search provided best results in 55 cases over 69 instances used in experiments

    A hybrid constraint integer programming approach to solve nurse scheduling problems

    Get PDF
    The Nurse Scheduling Problem can be simply defined as assigning a series of shift sequences (schedules) to several nurses over a planning horizon according to some constraints and preferences. The inherent benefits of having higher-quality and more flexible schedules are a reduction in outsourcing costs and an increase of job satisfaction in health organizations. In this paper, we present a novel systematic hybrid algorithm, which combines Integer Programming (IP) and Constraint Programming (CP) to efficiently solve highly-constrained Nurse Scheduling Problems. Our focus is to exploit the problem-specific information to improve the performance of the algorithm, and therefore obtain high-quality solutions as well as strong lower bounds. We test our algorithm based on some real-world benchmark instances. Very competitive results are reported compared to the state-of-the-art algorithms from the recent literature, showing that the proposed algorithm is able to solve a wide variety of real-world instances with different complex structures

    Metaheuristics For Solving Real World Employee Rostering and Shift Scheduling Problems

    Get PDF
    Optimising resources and making considerate decisions are central concerns in any responsible organisation aiming to succeed in efficiently achieving their goals. Careful use of resources can have positive outcomes in the form of fiscal savings, improved service levels, better quality products, improved awareness of diminishing returns and general output efficiency, regardless of field. Operational research techniques are advanced analytical tools used to improve managerial decision-making. There have been a variety of case studies where operational research techniques have been successfully applied to save millions of pounds. Operational research techniques have been successfully applied to a multitude of fields, including agriculture, policing, defence, conservation, air traffic control, and many more. In particular, management of resources in the form of employees is a challenging problem --- but one with the potential for huge improvements in efficiency. The problem this thesis tackles can be divided into two sub-problems; the personalised shift scheduling & employee rostering problem, and the roster pattern problem. The personalised shift scheduling & employee rostering problem involves the direct scheduling of employees to hours and days of week. This allows the creation of schedules which are tailored to individuals and allows a fine level over control over the results, but with at the cost of a large and challenging search space. The roster pattern problem instead takes existing patterns employees currently work, and uses these as a pool of potential schedules to be used. This reduces the search space but minimises the number of changes to existing employee schedules, which is preferable for personnel satisfaction. Existing research has shown that a variety of algorithms suit different problems and hybrid methods are found to typically outperform standalone ones in real-world contexts. Several algorithmic approaches for solving variations of the employee scheduling problem are considered in this thesis. Initially a VNS approach was used with a Metropolis-Hastings acceptance criterion. The second approach utilises ER&SR controlled by the EMCAC, which has only been used in the field of exam timetabling, and has not before been used within the domain of employee scheduling and rostering. ER&SR was then hybridised with our initial approach, producing ER&SR with VNS. Finally, ER&SR was hybridised into a matheuristic with Integer Programming and compared to the hybrid's individual components. A contribution of this thesis is evidence that the algorithm ER&SR has merit outside of the original sub-field of exam scheduling, and can be applied to shift scheduling and employee rostering. Further, ER&SR was hybridised and schedules produced by the hybridisations were found to be of higher quality than the standalone algorithm. In the literature review it was found that hybrid algorithms have become more popular in real-world problems in recent years, and this body of work has explored and continued this trend. Problem formulations in this thesis provide insight into creating constraints which satisfy the need for minimising employee dissatisfaction, particularly in regards to abrupt change. The research presented in this thesis has positively impacted a multinational and multibillion dollar field service operations company. This has been achieved by implementing a variety of techniques, including metaheuristics and a matheuristic, to schedule shifts and roster employees over a period of several months. This thesis showcases the research outputs by this project, and highlights the real-world impact of this research

    Novel heuristic and metaheuristic approaches to the automated scheduling of healthcare personnel

    Get PDF
    This thesis is concerned with automated personnel scheduling in healthcare organisations; in particular, nurse rostering. Over the past forty years the nurse rostering problem has received a large amount of research. This can be mostly attributed to its practical applications and the scientific challenges of solving such a complex problem. The benefits of automating the rostering process include reducing the planner’s workload and associated costs and being able to create higher quality and more flexible schedules. This has become more important recently in order to retain nurses and attract more people into the profession. Better quality rosters also reduce fatigue and stress due to overwork and poor scheduling and help to maximise the use of leisure time by satisfying more requests. A more contented workforce will lead to higher productivity, increased quality of patient service and a better level of healthcare. Basically stated, the nurse rostering problem requires the assignment of shifts to personnel to ensure that sufficient employees are present to perform the duties required. There are usually a number of constraints such as working regulations and legal requirements and a number of objectives such as maximising the nurses working preferences. When formulated mathematically this problem can be shown to belong to a class of problems which are considered intractable. The work presented in this thesis expands upon the research that has already been conducted to try and provide higher quality solutions to these challenging problems in shorter computation times. The thesis is broadly structured into three sections. 1) An investigation into a nurse rostering problem provided by an industrial collaborator. 2) A framework to aid research in nurse rostering. 3) The development of a number of advanced algorithms for solving highly complex, real world problems

    A Hybrid ant colony optimization algorithm for solving a highly constrained nurse rostering problem

    Get PDF
    Distribution of work shifts and off days to nurses in a duty roster is a crucial task. In hospital wards, much effort is spent trying to produce workable and quality rosters for their nurses. However, there are cases, such as mandatory working days per week and balanced distribution of shift types that could not be achieved in the manually generated rosters, which are still being practiced. Hence, this study focused on solving those issues arising in nurse rostering problems (NRPs) strategizing on a hybrid of Ant Colony Optimization (ACO) algorithm with a hill climbing technique. The hybridization with the hill climbing is aiming at fine-tuning the initial solution or roster generated by the ACO algorithm to achieve better rosters. The hybrid model is developed with the goal of satisfying the hard constraints, while minimizing the violation of soft constraints in such a way that fulfill hospital’s rules and nurses’ preferences. The real data used for this highly constrained NRPs was obtained from a large Malaysian hospital. Specifically, three main phases were involved in developing the hybrid model, which are generating an initial roster, updating the roster through the ACO algorithm, and implementing the hill climbing to further search for a refined solution. The results show that at a larger value of pheromone, the chance of obtaining a good solution was found with only small penalty values. This study has proven that the hybrid ACO is able to solve NRPs with good potential solutions that fulfilled all the four important criteria, which are coverage, quality, flexibility, and cost. Subsequently, the hybrid model is also beneficial to the hospital’s management whereby nurses can be scheduled with balanced distribution of shifts, which fulfill their preferences as well

    A hybrid integer and constraint programming approach to solve nurse rostering problems

    Get PDF
    The Nurse Rostering Problem can be defined as assigning a series of shift sequences (schedules) to several nurses over a planning horizon according to some limitations and preferences. The inherent benefits of generating higher-quality schedules are a reduction in outsourcing costs and an increase in job satisfaction of employees. In this paper, we present a hybrid algorithm, which combines Integer Programming and Constraint Programming to efficiently solve the highly-constrained Nurse Rostering Problem. We exploit the strength of IP in obtaining lower-bounds and finding an optimal solution with the capability of CP in finding feasible solutions in a co-operative manner. To improve the performance of the algorithm, and therefore, to obtain high-quality solutions as well as strong lower-bounds for a relatively short time, we apply some innovative ways to extract useful information such as the computational difficulty of in- stances and constraints to adaptively set the search parameters. We test our algorithm using two different datasets consisting of various problem instances, and report competitive results benchmarked with the state-of-the-art algorithms from the recent literature as well as standard IP and CP solvers, showing that the proposed algorithm is able to solve a wide variety of instances effectively

    A study of evoluntionary perturbative hyper-heuristics for the nurse rostering problem.

    Get PDF
    Master of Science in Computer Science. University of KwaZulu-Natal, Pietermaritzburg 2017.Hyper-heuristics are an emerging field of study for combinatorial optimization. The aim of a hyper-heuristic is to produce good results across a set of problems rather than producing the best results. There has been little investigation of hyper-heuristics for the nurse rostering problem. The majority of hyper-heuristics for the nurse rostering problem fit into a single type of hyper-heuristic, the selection perturbative hyper-heuristic. There is no work in using evolutionary algorithms employed as selection perturbative hyper-heuristics for the nurse rostering problem. There is also no work in using the generative perturbative type of hyper-heuristic for the nurse rostering problem. The first objective of this dissertation is to investigate the selection perturbative hyper-heuristic for the nurse rostering problem and the effectiveness of employing an evolutionary algorithm (SPHH). The second objective is to investigate a generative perturbative hyper-heuristic to evolve perturbation heuristics for the nurse rostering problem using genetic programming (GPHH). The third objective is to compare the performance of SPHH and GPHH. SPHH and GPHH were evaluated using the INRC2010 benchmark data set and the results obtained were compared to available results from literature. The INRC2010 benchmark set is comprised of sprint, medium and long instance types. SPHH and GPHH produced good results for the INRC2010 benchmark data set. GPHH and SPHH were found to have different strengths and weaknesses. SPHH found better results than GPHH for the medium instances. GPHH found better results than SPHH for the long instances. SPHH produced better average results. GPHH produced results that were closer to the best known results. These results suggest future research should investigate combining SPHH and GPHH to benefit from the strengths of both perturbative hyper-heuristics

    Integration of operations research and artificial intelligence approaches to solve the nurse rostering problem

    Get PDF
    Please note, incorrect date on spine and title page (2016). Degree was awarded in 2019.Nurse Rostering can be defined as assigning a series of shift sequences (schedules)to several nurses over a planning horizon according to some limitations and preferences. The inherent benefits of generating higher-quality rosters are a reduction in outsourcing costs and an increase in job satisfaction of employees.This problem is often very dicult to solve in practice, particularly by applying a sole approach. This dissertation discusses two hybrid solution methods to solve the Nurse Rostering Problem which are designed based on Integer Programming,Constraint Programming, and Meta-heuristics. The current research contributes to the scientific and practical aspects of the state of the art of nurse rostering. The present dissertation tries to address two research questions. First, we study the extension of the reach of exact method through hybridisation. That said, we hybridise Integer and Constraint Programming to exploit their complementary strengths in finding optimal and feasible solutions, respectively. Second,we introduce a new solution evaluation mechanism designed based on the problem structure. That said, we hybridise Integer Programming and Variable Neighbourhood Search reinforced with the new solution evaluation method to efficiently deal with the problem. To benchmark the hybrid algorithms, three different datasets with different characteristics are used. Computational experiments illustrate the effectiveness and versatility of the proposed approaches on a large variety of benchmark instancesNurse Rostering can be defined as assigning a series of shift sequences (schedules)to several nurses over a planning horizon according to some limitations and preferences. The inherent benefits of generating higher-quality rosters are a reduction in outsourcing costs and an increase in job satisfaction of employees.This problem is often very dicult to solve in practice, particularly by applying a sole approach. This dissertation discusses two hybrid solution methods to solve the Nurse Rostering Problem which are designed based on Integer Programming,Constraint Programming, and Meta-heuristics. The current research contributes to the scientific and practical aspects of the state of the art of nurse rostering. The present dissertation tries to address two research questions. First, we study the extension of the reach of exact method through hybridisation. That said, we hybridise Integer and Constraint Programming to exploit their complementary strengths in finding optimal and feasible solutions, respectively. Second,we introduce a new solution evaluation mechanism designed based on the problem structure. That said, we hybridise Integer Programming and Variable Neighbourhood Search reinforced with the new solution evaluation method to efficiently deal with the problem. To benchmark the hybrid algorithms, three different datasets with different characteristics are used. Computational experiments illustrate the effectiveness and versatility of the proposed approaches on a large variety of benchmark instance
    • …
    corecore