42,852 research outputs found

    HYEI: A New Hybrid Evolutionary Imperialist Competitive Algorithm for Fuzzy Knowledge Discovery

    Get PDF
    In recent years, imperialist competitive algorithm (ICA), genetic algorithm (GA), and hybrid fuzzy classification systems have been successfully and effectively employed for classification tasks of data mining. Due to overcoming the gaps related to ineffectiveness of current algorithms for analysing high-dimension independent datasets, a new hybrid approach, named HYEI, is presented to discover generic rule-based systems in this paper. This proposed approach consists of three stages and combines an evolutionary-based fuzzy system with two ICA procedures to generate high-quality fuzzy-classification rules. Initially, the best feature subset is selected by using the embedded ICA feature selection, and then these features are used to generate basic fuzzy-classification rules. Finally, all rules are optimized by using an ICA algorithm to reduce their length or to eliminate some of them. The performance of HYEI has been evaluated by using several benchmark datasets from the UCI machine learning repository. The classification accuracy attained by the proposed algorithm has the highest classification accuracy in 6 out of the 7 dataset problems and is comparative to the classification accuracy of the 5 other test problems, as compared to the best results previously published

    Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning

    Get PDF
    Among the computational intelligence techniques employed to solve classification problems, Fuzzy Rule-Based Classification Systems (FRBCSs) are a popular tool because of their interpretable models based on linguistic variables, which are easier to understand for the experts or end-users. The aim of this paper is to enhance the performance of FRBCSs by extending the Knowledge Base with the application of the concept of Interval-Valued Fuzzy Sets (IVFSs). We consider a post-processing genetic tuning step that adjusts the amplitude of the upper bound of the IVFS to contextualize the fuzzy partitions and to obtain a most accurate solution to the problem. We analyze the goodness of this approach using two basic and well-known fuzzy rule learning algorithms, the Chi et al.’s method and the fuzzy hybrid genetics-based machine learning algorithm. We show the improvement achieved by this model through an extensive empirical study with a large collection of data-sets.This work has been supported by the Spanish Ministry of Science and Technology under projects TIN2008-06681-C06-01 and TIN2007-65981

    EGFC: Evolving Gaussian Fuzzy Classifier from Never-Ending Semi-Supervised Data Streams -- With Application to Power Quality Disturbance Detection and Classification

    Full text link
    Power-quality disturbances lead to several drawbacks such as limitation of the production capacity, increased line and equipment currents, and consequent ohmic losses; higher operating temperatures, premature faults, reduction of life expectancy of machines, malfunction of equipment, and unplanned outages. Real-time detection and classification of disturbances are deemed essential to industry standards. We propose an Evolving Gaussian Fuzzy Classification (EGFC) framework for semi-supervised disturbance detection and classification combined with a hybrid Hodrick-Prescott and Discrete-Fourier-Transform attribute-extraction method applied over a landmark window of voltage waveforms. Disturbances such as spikes, notching, harmonics, and oscillatory transient are considered. Different from other monitoring systems, which require offline training of models based on a limited amount of data and occurrences, the proposed online data-stream-based EGFC method is able to learn disturbance patterns autonomously from never-ending data streams by adapting the parameters and structure of a fuzzy rule base on the fly. Moreover, the fuzzy model obtained is linguistically interpretable, which improves model acceptability. We show encouraging classification results.Comment: 10 pages, 6 figures, 1 table, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020

    Towards a Comprehensible and Accurate Credit Management Model: Application of four Computational Intelligence Methodologies

    Get PDF
    The paper presents methods for classification of applicants into different categories of credit risk using four different computational intelligence techniques. The selected methodologies involved in the rule-based categorization task are (1) feedforward neural networks trained with second order methods (2) inductive machine learning, (3) hierarchical decision trees produced by grammar-guided genetic programming and (4) fuzzy rule based systems produced by grammar-guided genetic programming. The data used are both numerical and linguistic in nature and they represent a real-world problem, that of deciding whether a loan should be granted or not, in respect to financial details of customers applying for that loan, to a specific private EU bank. We examine the proposed classification models with a sample of enterprises that applied for a loan, each of which is described by financial decision variables (ratios), and classified to one of the four predetermined classes. Attention is given to the comprehensibility and the ease of use for the acquired decision models. Results show that the application of the proposed methods can make the classification task easier and - in some cases - may minimize significantly the amount of required credit data. We consider that these methodologies may also give the chance for the extraction of a comprehensible credit management model or even the incorporation of a related decision support system in bankin

    Grammar-Guided Genetic Programming For Fuzzy Rule-Based Classification in Credit Management

    Get PDF

    Decoding Trace Peak Behaviour - A Neuro-Fuzzy Approach

    Get PDF
    corecore