7 research outputs found

    A Local Diagnosis Algorithm for Hypercube-like Networks under the BGM Diagnosis Model

    Full text link
    System diagnosis is process of identifying faulty nodes in a system. An efficient diagnosis is crucial for a multiprocessor system. The BGM diagnosis model is a modification of the PMC diagnosis model, which is a test-based diagnosis. In this paper, we present a specific structure and propose an algorithm for diagnosing a node in a system under the BGM model. We also give a polynomial-time algorithm that a node in a hypercube-like network can be diagnosed correctly in three test rounds under the BGM diagnosis model

    Multilevel distributed diagnosis and the design of a distributed network fault detection system based on the SNMP protocol.

    Get PDF
    In this thesis, we propose a new distributed diagnosis algorithm using the multilevel paradigm. This algorithm is a generalization of both the ADSD and Hi-ADSD algorithms. We present all details of the design and implementation of this multilevel adaptive distributed diagnosis algorithm called the ML-ADSD algorithm. We also present extensive simulation results comparing the performance of these three algorithms.In 1967, Preparata, Metze and Chien proposed a model and a framework for diagnosing faulty processors in a multiprocessor system. To exploit the inherent parallelism available in a multiprocessor system and thereby improving fault tolerance, Kuhl and Reddy, in 1980, pioneered a new area of research known as distributed system level diagnosis. Following this pioneering work, in 1991, Bianchini and Buskens proposed an adaptive distributed algorithm to diagnose fully connected networks. This algorithm called the ADSD algorithm has a diagnosis latency of O(N) testing rounds for a network with N nodes. With a view to improving the diagnosis latency of the ADSD algorithm, in 1998 Duarte and Nanya proposed a hierarchical distributed diagnosis algorithm for fully connected networks. This algorithm called the Hi-ADSD algorithm has a diagnosis latency of O(log2N) testing rounds. The Hi-ADSD algorithm can be viewed as a generalization of the ADSD algorithm.In all cases, the time required by the ML-ADSD algorithm is better than or the same as for the Hi-ADSD algorithm. The performance of the ML-ADSD algorithm can be improved by an appropriate choice of the number of clusters and the number of levels. Also, the ML-ADSD algorithm is scalable in the sense that only some minor modifications will be required to adapt the algorithm to networks of varying sizes. This property is not shared by the Hi-ADSD algorithm. The primary application of our research is to develop and implement a prototype network fault detection/monitoring system by integrating the ML-ADSD algorithm into a SNMP-based (Simple Network Management Protocol) fault management system. We report the details of the design and implementation of such a distributed network fault detection system

    Advanced power system protection and incipient fault detection and protection of spaceborne power systems

    Get PDF
    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 2

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) and cosponsored by NASA/JSC and U.S. Air Force Materiel Command. SOAR included NASA and USAF programmatic overviews, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement
    corecore