9,883 research outputs found

    International conference on software engineering and knowledge engineering: Session chair

    Get PDF
    The Thirtieth International Conference on Software Engineering and Knowledge Engineering (SEKE 2018) will be held at the Hotel Pullman, San Francisco Bay, USA, from July 1 to July 3, 2018. SEKE2018 will also be dedicated in memory of Professor Lofti Zadeh, a great scholar, pioneer and leader in fuzzy sets theory and soft computing. The conference aims at bringing together experts in software engineering and knowledge engineering to discuss on relevant results in either software engineering or knowledge engineering or both. Special emphasis will be put on the transference of methods between both domains. The theme this year is soft computing in software engineering & knowledge engineering. Submission of papers and demos are both welcome

    Addressing challenges to teach traditional and agile project management in academia

    Full text link
    In order to prepare students for a professional IT career, most universities attempt to provide a current educational curriculum in the Project Management (PM) area to their students. This is usually based on the most promising methodologies used by the software industry. As instructors, we need to balance traditional methodologies focused on proven project planning and control processes leveraging widely accepted methods and tools along with the newer agile methodologies. Such new frameworks emphasize that software delivery should be done in a flexible and iterative manner and with significant collaboration with product owners and customers. In our experience agile methodologies have witnessed an exponential growth in many diverse software organizations, and the various agile PM tools and techniques will continue to see an increase in adoption in the software development sector. Reflecting on these changes, there is a critical need to accommodate best practices and current methodologies in our courses that deliver Project Management content. In this paper we analyse two of the most widely used methodologies for traditional and agile software development – the widely used ISO/PMBOK standard provided by the Project Management Institute and the well-accepted Scrum framework. We discuss how to overcome curriculum challenges and deliver a quality undergraduate PM course for a Computer Science and Information systems curricula. Based on our teaching experience in Europe and North America, we present a comprehensive comparison of the two approaches. Our research covers the main concepts, processes, and roles associated with the two PM frameworks and recommended learning outcomes. The paper should be of value to instructors who are keen to see their computing students graduate with a sound understanding of current PM methodologies and who can deliver real-world software products.Accepted manuscrip

    Iterative criteria-based approach to engineering the requirements of software development methodologies

    Get PDF
    Software engineering endeavours are typically based on and governed by the requirements of the target software; requirements identification is therefore an integral part of software development methodologies. Similarly, engineering a software development methodology (SDM) involves the identification of the requirements of the target methodology. Methodology engineering approaches pay special attention to this issue; however, they make little use of existing methodologies as sources of insight into methodology requirements. The authors propose an iterative method for eliciting and specifying the requirements of a SDM using existing methodologies as supplementary resources. The method is performed as the analysis phase of a methodology engineering process aimed at the ultimate design and implementation of a target methodology. An initial set of requirements is first identified through analysing the characteristics of the development situation at hand and/or via delineating the general features desirable in the target methodology. These initial requirements are used as evaluation criteria; refined through iterative application to a select set of relevant methodologies. The finalised criteria highlight the qualities that the target methodology is expected to possess, and are therefore used as a basis for de. ning the final set of requirements. In an example, the authors demonstrate how the proposed elicitation process can be used for identifying the requirements of a general object-oriented SDM. Owing to its basis in knowledge gained from existing methodologies and practices, the proposed method can help methodology engineers produce a set of requirements that is not only more complete in span, but also more concrete and rigorous

    A Review: Effort Estimation Model for Scrum Projects using Supervised Learning

    Get PDF
    Effort estimation practice in Agile is a critical component of the methodology to help cross-functional teams to plan and prioritize their work. Agile approaches have emerged in recent years as a more adaptable means of creating software projects because they consistently produce a workable end product that is developed progressively, preventing projects from failing entirely. Agile software development enables teams to collaborate directly with clients and swiftly adjust to changing requirements. This produces a result that is distinct, gradual, and targeted. It has been noted that the present Scrum estimate approach heavily relies on historical data from previous projects and expert opinion, while existing agile estimation methods like analogy and planning poker become unpredictable in the absence of historical data and experts. User Stories are used to estimate effort in the Agile approach, which has been adopted by 60–70% of the software businesses. This study's goal is to review a variety of strategies and techniques that will be used to gauge and forecast effort. Additionally, the supervised machine learning method most suited for predictive analysis is reviewed in this paper

    New Effort and Schedule Estimation Models for Agile Processes in the U.S. DoD

    Get PDF
    Excerpt from the Proceedings of the Nineteenth Annual Acquisition Research SymposiumThe DoD’s new software acquisition pathway prioritizes speed of delivery, advocating agile software processes. Estimating the cost and schedule of agile software projects is critical at an early phase to establish baseline budgets and to select competitive bidders. The challenge is that common ag-ile sizing measures such as story points and user stories are not practical for early estimation as these are often reported after contract award in DoD. This study provides a set of parametric effort and schedule estimation models for agile projects using a sizing measure that is available before proposal evaluation based on data from 36 DoD agile projects. The results suggest that initial software requirements, defined as the sum of functions and external interfaces, is an effective sizing measure for early estimation of effort and schedule of agile projects. The models’ accuracy improves when application domain groups and peak staff are added as inputs.Approved for public release; distribution is unlimited

    New Effort and Schedule Estimation Models for Agile Processes in the U.S. DoD

    Get PDF
    Excerpt from the Proceedings of the Nineteenth Annual Acquisition Research SymposiumThe DoD’s new software acquisition pathway prioritizes speed of delivery, advocating agile software processes. Estimating the cost and schedule of agile software projects is critical at an early phase to establish baseline budgets and to select competitive bidders. The challenge is that common ag-ile sizing measures such as story points and user stories are not practical for early estimation as these are often reported after contract award in DoD. This study provides a set of parametric effort and schedule estimation models for agile projects using a sizing measure that is available before proposal evaluation based on data from 36 DoD agile projects. The results suggest that initial software requirements, defined as the sum of functions and external interfaces, is an effective sizing measure for early estimation of effort and schedule of agile projects. The models’ accuracy improves when application domain groups and peak staff are added as inputs.Approved for public release; distribution is unlimited

    Agile Requirements Engineering: A systematic literature review

    Get PDF
    Nowadays, Agile Software Development (ASD) is used to cope with increasing complexity in system development. Hybrid development models, with the integration of User-Centered Design (UCD), are applied with the aim to deliver competitive products with a suitable User Experience (UX). Therefore, stakeholder and user involvement during Requirements Engineering (RE) are essential in order to establish a collaborative environment with constant feedback loops. The aim of this study is to capture the current state of the art of the literature related to Agile RE with focus on stakeholder and user involvement. In particular, we investigate what approaches exist to involve stakeholder in the process, which methodologies are commonly used to present the user perspective and how requirements management is been carried out. We conduct a Systematic Literature Review (SLR) with an extensive quality assessment of the included studies. We identified 27 relevant papers. After analyzing them in detail, we derive deep insights to the following aspects of Agile RE: stakeholder and user involvement, data gathering, user perspective, integrated methodologies, shared understanding, artifacts, documentation and Non-Functional Requirements (NFR). Agile RE is a complex research field with cross-functional influences. This study will contribute to the software development body of knowledge by assessing the involvement of stakeholder and user in Agile RE, providing methodologies that make ASD more human-centric and giving an overview of requirements management in ASD.Ministerio de EconomĂ­a y Competitividad TIN2013-46928-C3-3-RMinisterio de EconomĂ­a y Competitividad TIN2015-71938-RED
    • …
    corecore