487 research outputs found

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Intelligent adaptive control for nonlinear applications

    Full text link
    The thesis deals with the design and implementation of an Adaptive Flight Control technique for Unmanned Aerial Vehicles (UAVs). The application of UAVs has been increasing exponentially in the last decade both in Military and Civilian fronts. These UAVs fly at very low speeds and Reynolds numbers, have nonlinear coupling, and tend to exhibit time varying characteristics. In addition, due to the variety of missions, they fly in uncertain environments exposing themselves to unpredictable external disturbances. The successful completion of the UAV missions is largely dependent on the accuracy of the control provided by the flight controllers. Thus there is a necessity for accurate and robust flight controllers. These controllers should be able to adapt to the changes in the dynamics due to internal and external changes. From the available literature, it is known that, one of the better suited adaptive controllers is the model based controller. The design and implementation of model based adaptive controller is discussed in the thesis. A critical issue in the design and application of model based control is the online identification of the UAV dynamics from the available sensors using the onboard processing capability. For this, proper instrumentation in terms of sensors and avionics for two platforms developed at UNSW@ADFA is discussed. Using the flight data from the remotely flown platforms, state space identification and fuzzy identification are developed to mimic the UAV dynamics. Real time validations using Hardware in Loop (HIL) simulations show that both the methods are feasible for control. A finer comparison showed that the accuracy of identification using fuzzy systems is better than the state space technique. The flight tests with real time online identification confirmed the feasibility of fuzzy identification for intelligent control. Hence two adaptive controllers based on the fuzzy identification are developed. The first adaptive controller is a hybrid indirect adaptive controller that utilises the model sensitivity in addition to output error for adaptation. The feedback of the model sensitivity function to adapt the parameters of the controller is shown to have beneficial effects, both in terms of convergence and accuracy. HIL simulations applied to the control of roll stabilised pitch autopilot for a typical UAV demonstrate the improvements compared to the direct adaptive controller. Next a novel fuzzy model based inversion controller is presented. The analytical approximate inversion proposed in this thesis does not increase the computational effort. The comparisons of this controller with other controller for a benchmark problem are presented using numerical simulations. The results bring out the superiority of this technique over other techniques. The extension of the analytical inversion based controller for multiple input multiple output problem is presented for the design of roll stabilised pitch autopilot for a UAV. The results of the HIL simulations are discussed for a typical UAV. Finally, flight test results for angle of attack control of one of the UAV platforms at UNSW@ADFA are presented. The flight test results show that the adaptive controller is capable of controlling the UAV suitably in a real environment, demonstrating its robustness characteristics

    Large-area visually augmented navigation for autonomous underwater vehicles

    Get PDF
    Submitted to the Joint Program in Applied Ocean Science & Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2005This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting the inertial sensor information that is routinely available on such platforms. We adopt a systems-level approach exploiting the complementary aspects of inertial sensing and visual perception from a calibrated pose-instrumented platform. This systems-level strategy yields a robust solution to underwater imaging that overcomes many of the unique challenges of a marine environment (e.g., unstructured terrain, low-overlap imagery, moving light source). Our large-area SLAM algorithm recursively incorporates relative-pose constraints using a view-based representation that exploits exact sparsity in the Gaussian canonical form. This sparsity allows for efficient O(n) update complexity in the number of images composing the view-based map by utilizing recent multilevel relaxation techniques. We show that our algorithmic formulation is inherently sparse unlike other feature-based canonical SLAM algorithms, which impose sparseness via pruning approximations. In particular, we investigate the sparsification methodology employed by sparse extended information filters (SEIFs) and offer new insight as to why, and how, its approximation can lead to inconsistencies in the estimated state errors. Lastly, we present a novel algorithm for efficiently extracting consistent marginal covariances useful for data association from the information matrix. In summary, this thesis advances the current state-of-the-art in underwater visual navigation by demonstrating end-to-end automatic processing of the largest visually navigated dataset to date using data collected from a survey of the RMS Titanic (path length over 3 km and 3100 m2 of mapped area). This accomplishment embodies the summed contributions of this thesis to several current SLAM research issues including scalability, 6 degree of freedom motion, unstructured environments, and visual perception.This work was funded in part by the CenSSIS ERC of the National Science Foundation under grant EEC-9986821, in part by the Woods Hole Oceanographic Institution through a grant from the Penzance Foundation, and in part by a NDSEG Fellowship awarded through the Department of Defense

    Investigations of Model-Free Sliding Mode Control Algorithms including Application to Autonomous Quadrotor Flight

    Get PDF
    Sliding mode control is a robust nonlinear control algorithm that has been used to implement tracking controllers for unmanned aircraft systems that are robust to modeling uncertainty and exogenous disturbances, thereby providing excellent performance for autonomous operation. A significant advance in the application of sliding mode control for unmanned aircraft systems would be adaptation of a model-free sliding mode control algorithm, since the most complex and time-consuming aspect of implementation of sliding mode control is the derivation of the control law with incorporation of the system model, a process required to be performed for each individual application of sliding mode control. The performance of four different model-free sliding mode control algorithms was compared in simulation using a variety of aerial system models and real-world disturbances (e.g. the effects of discretization and state estimation). The two best performing algorithms were shown to exhibit very similar behavior. These two algorithms were implemented on a quadrotor (both in simulation and using real-world hardware) and the performance was compared to a traditional PID-based controller using the same state estimation algorithm and control setup. Simulation results show the model-free sliding mode control algorithms exhibit similar performance to PID controllers without the tedious tuning process. Comparison between the two model-free sliding mode control algorithms showed very similar performance as measured by the quadratic means of tracking errors. Flight testing showed that while a model-free sliding mode control algorithm is capable of controlling realworld hardware, further characterization and significant improvements are required before it is a viable alternative to conventional control algorithms. Large tracking errors were observed for both the model-free sliding mode control and PID based flight controllers and the performance was characterized as unacceptable for most applications. The poor performance of both controllers suggests tracking errors could be attributed to errors in state estimation, which effectively introduce unknown dynamics into the feedback loop. Further testing with improved state estimation would allow for more conclusions to be drawn about the performance characteristics of the model-free sliding mode control algorithms

    Intelligent Control Strategies for an Autonomous Underwater Vehicle

    Get PDF
    The dynamic characteristics of autonomous underwater vehicles (AUVs) present a control problem that classical methods cannot often accommodate easily. Fundamentally, AUV dynamics are highly non-linear, and the relative similarity between the linear and angular velocities about each degree of freedom means that control schemes employed within other flight vehicles are not always applicable. In such instances, intelligent control strategies offer a more sophisticated approach to the design of the control algorithm. Neurofuzzy control is one such technique, which fuses the beneficial properties of neural networks and fuzzy logic in a hybrid control architecture. Such an approach is highly suited to development of an autopilot for an AUV. Specifically, the adaptive network-based fuzzy inference system (ANFIS) is discussed in Chapter 4 as an effective new approach for neurally tuning course-changing fuzzy autopilots. However, the limitation of this technique is that it cannot be used for developing multivariable fuzzy structures. Consequently, the co-active ANFIS (CANFIS) architecture is developed and employed as a novel multi variable AUV autopilot within Chapter 5, whereby simultaneous control of the AUV yaw and roll channels is achieved. Moreover, this structure is flexible in that it is extended in Chapter 6 to perform on-line control of the AUV leading to a novel autopilot design that can accommodate changing vehicle pay loads and environmental disturbances. Whilst the typical ANFIS and CANFIS structures prove effective for AUV control system design, the well known properties of radial basis function networks (RBFN) offer a more flexible controller architecture. Chapter 7 presents a new approach to fuzzy modelling and employs both ANFIS and CANFIS structures with non-linear consequent functions of composite Gaussian form. This merger of CANFIS and a RBFN lends itself naturally to tuning with an extended form of the hybrid learning rule, and provides a very effective approach to intelligent controller development.The Sea Systems and Platform Integration Sector, Defence Evaluation and Research Agency, Winfrit

    Design and Implementation of an Artificial Neural Network Controller for Quadrotor Flight in Confined Environment

    Get PDF
    Quadrotors offer practical solutions for many applications, such as emergency rescue, surveillance, military operations, videography and many more. For this reason, they have recently attracted the attention of research and industry. Even though they have been intensively studied, quadrotors still suffer from some challenges that limit their use, such as trajectory measurement, attitude estimation, obstacle avoidance, safety precautions, and land cybersecurity. One major problem is flying in a confined environment, such as closed buildings and tunnels, where the aerodynamics around the quadrotor are affected by close proximity objects, which result in tracking performance deterioration, and sometimes instability. To address this problem, researchers followed three different approaches; the Modeling approach, which focuses on the development of a precise dynamical model that accounts for the different aerodynamic effects, the Sensor Integration approach, which focuses on the addition of multiple sensors to the quadrotor and applying algorithms to stabilize the quadrotor based on their measurements, and the Controller Design approach, which focuses on the development of an adaptive and robust controller. In this research, a learning controller is proposed as a solution for the issue of quadrotor trajectory control in confined environments. This controller utilizes Artificial Neural Networks to adjust for the unknown aerodynamics on-line. A systematic approach for controller design is developed, so that, the approach could be followed for the development of controllers for other nonlinear systems of similar form. One goal for this research is to develop a global controller that could be applied to any quadrotor with minimal adjustment. A novel Artificial Neural Network structure is presented that increases learning efficiency and speed. In addition, a new learning algorithm is developed for the Artificial Neural Network, when utilized with the developed controller. Simulation results for the designed controller when applied to the Qball-X4 quadrotor are presented that show the effectiveness of the proposed Artificial Neural Network structure and the developed learning algorithm in the presence of variety of different unknown aerodynamics. These results are confirmed with real time experimentation, as the developed controller was successfully applied to Quanserโ€™s Qball-X4 quadrotor for the flight control in confined environment. The practical challenges associated with the application of such a controller for quadrotor flight in confined environment are analyzed and adequately resolved to achieve an acceptable tracking performance
    • โ€ฆ
    corecore