135 research outputs found

    Inertia-Constrained Pixel-by-Pixel Nonnegative Matrix Factorisation: a Hyperspectral Unmixing Method Dealing with Intra-class Variability

    Full text link
    Blind source separation is a common processing tool to analyse the constitution of pixels of hyperspectral images. Such methods usually suppose that pure pixel spectra (endmembers) are the same in all the image for each class of materials. In the framework of remote sensing, such an assumption is no more valid in the presence of intra-class variabilities due to illumination conditions, weathering, slight variations of the pure materials, etc... In this paper, we first describe the results of investigations highlighting intra-class variability measured in real images. Considering these results, a new formulation of the linear mixing model is presented leading to two new methods. Unconstrained Pixel-by-pixel NMF (UP-NMF) is a new blind source separation method based on the assumption of a linear mixing model, which can deal with intra-class variability. To overcome UP-NMF limitations an extended method is proposed, named Inertia-constrained Pixel-by-pixel NMF (IP-NMF). For each sensed spectrum, these extended versions of NMF extract a corresponding set of source spectra. A constraint is set to limit the spreading of each source's estimates in IP-NMF. The methods are tested on a semi-synthetic data set built with spectra extracted from a real hyperspectral image and then numerically mixed. We thus demonstrate the interest of our methods for realistic source variabilities. Finally, IP-NMF is tested on a real data set and it is shown to yield better performance than state of the art methods

    Target Detection in a Structured Background Environment Using an Infeasibility Metric in an Invariant Space

    Get PDF
    This paper develops a hybrid target detector that incorporates structured backgrounds and physics based modeling together with a geometric infeasibility metric. More often than not, detection algorithms are usually applied to atmospherically compensated hyperspectral imagery. Rather than compensate the imagery, we take the opposite approach by using a physics based model to generate permutations of what the target might look like as seen by the sensor in radiance space. The development and status of such a method is presented as applied to the generation of target spaces. The generated target spaces are designed to fully encompass image target pixels while using a limited number of input model parameters. Background spaces are modeled using a linear subspace (structured) approach characterized by endmembers found by using the maximum distance method (MaxD). After augmenting the image data with the target space, 15 endmembers were found, which were not related to the target (i.e., background endmembers). A geometric infeasibility metric is developed which enables one to be more selective in rejecting false alarms. Preliminary results in the design of such a metric show that an orthogonal projection operator based on target space vectors can distinguish between target and background pixels. Furthermore, when used in conjunction with an operator that produces abundance-like values, we obtained separation between target, ackground, and anomalous pixels. This approach was applied to HYDICE image spectrometer data

    Hyperspectral sub-pixel target detection using hybrid algorithms and Physics Based Modeling

    Get PDF
    This thesis develops a new hybrid target detection algorithm called the Physics Based-Structured InFeasibility Target-detector (PB-SIFT) which incorporates Physics Based Modeling (PBM) along with a new Structured Infeasibility Projector (SIP) metric. Traditional matched filters are susceptible to leakage or false alarms due to bright or saturated pixels that appear target-like to hyperspectral detection algorithms but are not truly target. This detector mitigates against such false alarms. More often than not, detection algorithms are applied to atmospherically compensated hyperspectral imagery. Rather than compensate the imagery, we take the opposite approach by using a physics based model to generate permutations of what the target might look like as seen by the sensor in radiance space. The development and status of such a method is presented as applied to the generation of target spaces. The generated target spaces are designed to fully encompass image target pixels while using a limited number of input model parameters. Evaluation of such target spaces shows that they can reproduce a HYDICE image target pixel spectrum to less than 1% RMS error (equivalent reflectance) in the visible and less than 6% in the near IR. Background spaces are modeled using a linear subspace (structured) approach characterized by basis vectors found by using the maximum distance method (MaxD). The SIP is developed along with a Physics Based Orthogonal Projection Operator (PBosp) which produces a 2 dimensional decision space. Results from the HYDICE FR I data set show that the physics based approach, along with the PB-SIFT algorithm, can out perform the Spectral Angle Mapper (SAM) and Spectral Matched Filter (SMF) on both exposed and fully concealed man-made targets found in hyperspectral imagery. Furthermore, the PB-SIFT algorithm performs as good (if not better) than the Mixture Tuned Matched Filter (MTMF)

    Physics-Based Detection of Subpixel Targets in Hyperspectral Imagery

    Get PDF
    Hyperspectral imagery provides the ability to detect targets that are smaller than the size of a pixel. They provide this ability by measuring the reflection and absorption of light at different wavelengths creating a spectral signature for each pixel in the image. This spectral signature contains information about the different materials within the pixel; therefore, the challenge in subpixel target detection lies in separating the target's spectral signature from competing background signatures. Most research has approached this problem in a purely statistical manner. Our approach fuses statistical signal processing techniques with the physics of reflectance spectroscopy and radiative transfer theory. Using this approach, we provide novel algorithms for all aspects of subpixel detection from parameter estimation to threshold determination. Characterization of the target and background spectral signatures is a key part of subpixel detection. We develop an algorithm to generate target signatures based on radiative transfer theory using only the image and a reference signature without the need for calibration, weather information, or source-target-receiver geometries. For background signatures, our work identifies that even slight estimation errors in the number of background signatures can severely degrade detection performance. To this end, we present a new method to estimate the number of background signatures specifically for subpixel target detection. At the core of the dissertation is the development of two hybrid detectors which fuse spectroscopy with statistical hypothesis testing. Our results show that the hybrid detectors provide improved performance in three different ways: insensitivity to the number of background signatures, improved detection performance, and consistent performance across multiple images leading to improved receiver operating characteristic curves. Lastly, we present a novel adaptive threshold estimate via extreme value theory. The method can be used on any detector type - not just those that are constant false alarm rate (CFAR) detectors. Even on CFAR detectors our proposed method can estimate thresholds that are better than theoretical predictions due to the inherent mismatch between the CFAR model assumptions and real data. Additionally, our method works in the presence of target detections while still estimating an accurate threshold for a desired false alarm rate

    Contributions to the analysis and segmentation of remote sensing hyperspectral images

    Get PDF
    142 p.This PhD Thesis deals with the segmentation of hyperspectral images from the point of view of Lattice Computing. We have introduced the application of Associative Morphological Memories as a tool to detect strong lattice independence, which has been proven equivalent to affine independence. Therefore, sets of strong lattice independent vectors found using our algorithms correspond to the vertices of convex sets that cover most of the data. Unmixing the data relative to these endmembers provides a collection of abundance images which can be assumed either as unsupervised segmentations of the images or as features extracted from the hyperspectral image pixels. Besides, we have applied this feature extraction to propose a content based image retrieval approach based on the image spectral characterization provided by the endmembers. Finally, we extended our ideas to the proposal of Morphological Cellular Automata whose dynamics are guided by the morphological/lattice independence properties of the image pixels. Our works have also explored the applicability of Evolution Strategies to the endmember induction from the hyperspectral image data

    Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop

    Get PDF
    The Airborne Imaging Spectrometer (AIS) Data Analysis Workshop was held at the Jet Propulsion Laboratory on April 8 to 10, 1985. It was attended by 92 people who heard reports on 30 investigations currently under way using AIS data that have been collected over the past two years. Written summaries of 27 of the presentations are in these Proceedings. Many of the results presented at the Workshop are preliminary because most investigators have been working with this fundamentally new type of data for only a relatively short time. Nevertheless, several conclusions can be drawn from the Workshop presentations concerning the value of imaging spectrometry to Earth remote sensing. First, work with AIS has shown that direct identification of minerals through high spectral resolution imaging is a reality for a wide range of materials and geological settings. Second, there are strong indications that high spectral resolution remote sensing will enhance the ability to map vegetation species. There are also good indications that imaging spectrometry will be useful for biochemical studies of vegetation. Finally, there are a number of new data analysis techniques under development which should lead to more efficient and complete information extraction from imaging spectrometer data. The results of the Workshop indicate that as experience is gained with this new class of data, and as new analysis methodologies are developed and applied, the value of imaging spectrometry should increase

    Hyperspectral Image Analysis through Unsupervised Deep Learning

    Get PDF
    Hyperspectral image (HSI) analysis has become an active research area in computer vision field with a wide range of applications. However, in order to yield better recognition and analysis results, we need to address two challenging issues of HSI, i.e., the existence of mixed pixels and its significantly low spatial resolution (LR). In this dissertation, spectral unmixing (SU) and hyperspectral image super-resolution (HSI-SR) approaches are developed to address these two issues with advanced deep learning models in an unsupervised fashion. A specific application, anomaly detection, is also studied, to show the importance of SU.Although deep learning has achieved the state-of-the-art performance on supervised problems, its practice on unsupervised problems has not been fully developed. To address the problem of SU, an untied denoising autoencoder is proposed to decompose the HSI into endmembers and abundances with non-negative and abundance sum-to-one constraints. The denoising capacity is incorporated into the network with a sparsity constraint to boost the performance of endmember extraction and abundance estimation.Moreover, the first attempt is made to solve the problem of HSI-SR using an unsupervised encoder-decoder architecture by fusing the LR HSI with the high-resolution multispectral image (MSI). The architecture is composed of two encoder-decoder networks, coupled through a shared decoder, to preserve the rich spectral information from the HSI network. It encourages the representations from both modalities to follow a sparse Dirichlet distribution which naturally incorporates the two physical constraints of HSI and MSI. And the angular difference between representations are minimized to reduce the spectral distortion.Finally, a novel detection algorithm is proposed through spectral unmixing and dictionary based low-rank decomposition, where the dictionary is constructed with mean-shift clustering and the coefficients of the dictionary is encouraged to be low-rank. Experimental evaluations show significant improvement on the performance of anomaly detection conducted on the abundances (through SU).The effectiveness of the proposed approaches has been evaluated thoroughly by extensive experiments, to achieve the state-of-the-art results

    Soil erosion in the Alps : causes and risk assessment

    Get PDF
    The issue of soil erosion in the Alps has long been neglected due to the low economic value of the agricultural land. However, soil stability is a key parameter which affects ecosystem services like slope stability, water budgets (drinking water reservoirs as well as flood prevention), vegetation productivity, ecosystem biodiversity and nutrient production. In alpine regions, spatial estimates on soil erosion are difficult to derive because the highly heterogeneous biogeophysical structure impedes measurement of soil erosion and the applicability of soil erosion models. However, remote sensing and geographic information system (GIS) methods allow for spatial estimation of soil erosion by direct detection of erosion features and supply of input data for soil erosion models. Thus, the main objective of this work is to address the problem of soil erosion risk assessment in the Alps on catchment scale with remote sensing and GIS tools. Regarding soil erosion processes the focus is on soil erosion by water (here sheet erosion) and gravity (here landslides). For these two processes we address i) the monitoring and mapping of the erosion features and related causal factors ii) soil erosion risk assessment with special emphasis on iii) the validation of existing models for alpine areas. All investigations were accomplished in the Urseren Valley (Central Swiss Alps) where the valley slopes are dramatically affected by sheet erosion and landslides. For landslides, a natural susceptibility of the catchment has been indicated by bivariate and multivariate statistical analysis. Geology, slope and stream density are the most significant static landslide causal factors. Static factors are here defined as factors that do not change their attributes during the considered time span of the study (45 years), e.g. geology, stream network. The occurrence of landslides might be significantly increased by the combined effects of global climate and land use change. Thus, our hypothesis is that more recent changes in land use and climate affected the spatial and temporal occurrence of landslides. The increase of the landslide area of 92% within 45 years in the study site confirmed our hypothesis. In order to identify the cause for the trend in landslide occurrence time-series of landslide causal factors were analysed. The analysis revealed increasing trends in the frequency and intensity of extreme rainfall events and stocking of pasture animals. These developments presumably enhanced landslide hazard. Moreover, changes in land-cover and land use were shown to have affected landslide occurrence. For instance, abandoned areas and areas with recently emerging shrub vegetation show very low landslide densities. Detailed spatial analysis of the land use with GIS and interviews with farmers confirmed the strong influence of the land use management practises on slope stability. The definite identification and quantification of the impact of these non-stationary landslide causal factors (dynamic factors) on the landslide trend was not possible due to the simultaneous change of several factors. The consideration of dynamic factors in statistical landslide susceptibility assessments is still unsolved. The latter may lead to erroneous model predictions, especially in times of dramatic environmental change. Thus, we evaluated the effect of dynamic landslide causal factors on the validity of landslide susceptibility maps for spatial and temporal predictions. For this purpose, a logistic regression model based on data of the year 2000 was set up. The resulting landslide susceptibility map was valid for spatial predictions. However, the model failed to predict the landslides that occurred in a subsequent event. In order to handle this weakness of statistic landslide modelling a multitemporal approach was developed. It is based on establishing logistic regression models for two points in time (here 1959 and 2000). Both models could correctly classify >70% of the independent spatial validation dataset. By subtracting the 1959 susceptibility map from the 2000 susceptibility map a deviation susceptibility map was obtained. Our interpretation was that these susceptibility deviations indicate the effect of dynamic causal factors on the landslide probability. The deviation map explained 85% of new independent landslides occurring after 2000. Thus, we believe it to be a suitable tool to add a time element to a susceptibility map pointing to areas with changing susceptibility due to recently changing environmental conditions or human interactions. In contrast to landslides that are a direct threat to buildings and infrastructure, sheet erosion attracts less attention because it is often an unseen process. Nonetheless, sheet erosion may account for a major proportion of soil loss. Soil loss by sheet erosion is related to high spatial variability, however, in contrast to arable fields for alpine grasslands erosion damages are long lasting and visible over longer time periods. A crucial erosion triggering parameter that can be derived from satellite imagery is fractional vegetation cover (FVC). Measurements of the radiogenic isotope Cs-137, which is a common tracer for soil erosion, confirm the importance of FVC for soil erosion yield in alpine areas. Linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and the spectral index NDVI are applied for estimating fractional abundance of vegetation and bare soil. To account for the small scale heterogeneity of the alpine landscape very high resolved multispectral QuickBird imagery is used. The performance of LSU and MTMF for estimating percent vegetation cover is good (r²=0.85, r²=0.71 respectively). A poorer performance is achieved for bare soil (r²=0.28, r²=0.39 respectively) because compared to vegetation, bare soil has a less characteristic spectral signature in the wavelength domain detected by the QuickBird sensor. Apart from monitoring erosion controlling factors, quantification of soil erosion by applying soil erosion risk models is done. The performance of the two established models Universal Soil Loss Equation (USLE) and Pan-European Soil Erosion Risk Assessment (PESERA) for their suitability to model erosion for mountain environments is tested. Cs-137 is used to verify the resulting erosion rates from USLE and PESERA. PESERA yields no correlation to measured Cs-137 long term erosion rates and shows lower sensitivity to FVC. Thus, USLE is used to model the entire study site. The LSU-derived FVC map is used to adapt the C factor of the USLE. Compared to the low erosion rates computed with the former available low resolution dataset (1:25000) the satellite supported USLE map shows “hotspots” of soil erosion of up to 16 t ha-1 a-1. In general, Cs-137 in combination with the USLE is a very suitable method to assess soil erosion for larger areas, as both give estimates on long-term soil erosion. Especially for inaccessible alpine areas, GIS and remote sensing proved to be powerful tools that can be used for repetitive measurements of erosion features and causal factors. In times of global change it is of crucial importance to account for temporal developments. However, the evaluation of the applied soil erosion risk models revealed that the implementation of temporal aspects, such as varying climate, land use and vegetation cover is still insufficient. Thus, the proposed validation strategies (spatial, temporal and via Cs-137) are essential. Further case studies in alpine regions are needed to test the methods elaborated for the Urseren Valley. However, the presented approaches are promising with respect to improve the monitoring and identification of soil erosion risk areas in alpine regions

    Caracterização e estudo comparativo de exsudações de hidrocarbonetos e plays petrolíferos em bacias terrestres das regiões central do Irã e sudeste do Brasil usando sensoriamento remoto espectral

    Get PDF
    Orientador: Carlos Roberto de Souza FilhoTese (doutorado) - Universidade Estadual de Campinas, Instituto de GeociênciasResumo: O objetivo desta pesquisa foi explorar as assinaturas de exsudações de hidrocarbonetos na superfície usando a tecnologia de detecção remota espectral. Isso foi alcançado primeiro, realizando uma revisão abrangente das capacidades e potenciais técnicas de detecção direta e indireta. Em seguida, a técnica foi aplicada para investigar dois locais de teste localizados no Irã e no Brasil, conhecidos por hospedar sistemas ativos de micro-exsudações e afloramentos betuminosos, respectivamente. A primeira área de estudo está localizada perto da cidade de Qom (Irã), e está inserida no campo petrolífero Alborz, enterrado sob sedimentos datados do Oligoceno da Formação Upper Red. O segundo local está localizado perto da cidade de Anhembi (SP), na margem oriental da bacia do Paraná, no Brasil, e inclui acumulações de betume em arenitos triássicos da Formação Pirambóia. O trabalho na área de Qom integrou evidências de (i) estudos petrográficos e geoquímicos em laboratório, (ii) investigações de afloramentos em campo, e (iii) mapeamento de anomalia em larga escala através de conjuntos de dados multi-espectrais ASTER e Sentinel-2. O resultado deste estudo se trata de novos indicadores mineralógicos e geoquímicos para a exploração de micro-exsudações e um modelo de micro-exsudações atualizado. Durante este trabalho, conseguimos desenvolver novas metodologias para análise de dados espectroscópicos. Através da utilização de dados simulados, indicamos que o instrumento de satélite WorldView-3 tem potencial para detecção direta de hidrocarbonetos. Na sequência do estudo, dados reais sobre afloramentos de arenitos e óleo na área de Anhembi foram investigados. A área foi fotografada novamente no chão e usando o sistema de imagem hiperespectral AisaFENIX. Seguiu-se estudos e amostragem no campo,incluindo espectroscopia de alcance fechado das amostras no laboratório usando instrumentos de imagem (ou seja, sisuCHEMA) e não-imagem (ou seja, FieldSpec-4). O estudo demonstrou que uma abordagem espectroscópica multi-escala poderia fornecer uma imagem completa das variações no conteúdo e composição do betume e minerais de alteração que acompanham. A assinatura de hidrocarbonetos, especialmente a centrada em 2300 nm, mostrou-se consistente e comparável entre as escalas e capaz de estimar o teor de betume de areias de petróleo em todas as escalas de imagemAbstract: The objective of this research was to explore for the signatures of seeping hydrocarbons on the surface using spectral remote sensing technology. It was achieved firstly by conducting a comprehensive review of the capacities and potentials of the technique for direct and indirect seepage detection. Next, the technique was applied to investigate two distinctive test sites located in Iran and Brazil known to retain active microseepage systems and bituminous outcrops, respectively. The first study area is located near the city of Qom in Iran, and consists of Alborz oilfield buried under Oligocene sediments of the Upper-Red Formation. The second site is located near the town of Anhembi on the eastern edge of the Paraná Basin in Brazil and includes bitumen accumulations in the Triassic sandstones of the Pirambóia Formation. Our work in Qom area integrated evidence from (i) petrographic, spectroscopic, and geochemical studies in the laboratory, (ii) outcrop investigations in the field, and (iii) broad-scale anomaly mapping via orbital remote sensing data. The outcomes of this study was novel mineralogical and geochemical indicators for microseepage characterization and a classification scheme for the microseepage-induced alterations. Our study indicated that active microseepage systems occur in large parts of the lithofacies in Qom area, implying that the extent of the petroleum reservoir is much larger than previously thought. During this work, we also developed new methodologies for spectroscopic data analysis and processing. On the other side, by using simulated data, we indicated that WorldView-3 satellite instrument has the potential for direct hydrocarbon detection. Following this demonstration, real datasets were acquired over oil-sand outcrops of the Anhembi area. The area was further imaged on the ground and from the air by using an AisaFENIX hyperspectral imaging system. This was followed by outcrop studies and sampling in the field and close-range spectroscopy in the laboratory using both imaging (i.e. sisuCHEMA) and nonimaging instruments. The study demonstrated that a multi-scale spectroscopic approach could provide a complete picture of the variations in the content and composition of bitumen and associated alteration mineralogy. The oil signature, especially the one centered at 2300 nm, was shown to be consistent and comparable among scales, and capable of estimating the bitumen content of oil-sands at all imaging scalesDoutoradoGeologia e Recursos NaturaisDoutor em Geociências2015/06663-7FAPES
    corecore