14,785 research outputs found

    Surface Defect Classification for Hot-Rolled Steel Strips by Selectively Dominant Local Binary Patterns

    Get PDF
    Developments in defect descriptors and computer vision-based algorithms for automatic optical inspection (AOI) allows for further development in image-based measurements. Defect classification is a vital part of an optical-imaging-based surface quality measuring instrument. The high-speed production rhythm of hot continuous rolling requires an ultra-rapid response to every component as well as algorithms in AOI instrument. In this paper, a simple, fast, yet robust texture descriptor, namely selectively dominant local binary patterns (SDLBPs), is proposed for defect classification. First, an intelligent searching algorithm with a quantitative thresholding mechanism is built to excavate the dominant non-uniform patterns (DNUPs). Second, two convertible schemes of pattern code mapping are developed for binary encoding of all uniform patterns and DNUPs. Third, feature extraction is carried out under SDLBP framework. Finally, an adaptive region weighting method is built for further strengthening the original nearest neighbor classifier in the feature matching stage. The extensive experiments carried out on an open texture database (Outex) and an actual surface defect database (Dragon) indicates that our proposed SDLBP yields promising performance on both classification accuracy and time efficiencyPeer reviewe

    Ensemble Joint Sparse Low Rank Matrix Decomposition for Thermography Diagnosis System

    Get PDF
    Composite is widely used in the aircraft industry and it is essential for manufacturers to monitor its health and quality. The most commonly found defects of composite are debonds and delamination. Different inner defects with complex irregular shape is difficult to be diagnosed by using conventional thermal imaging methods. In this paper, an ensemble joint sparse low rank matrix decomposition (EJSLRMD) algorithm is proposed by applying the optical pulse thermography (OPT) diagnosis system. The proposed algorithm jointly models the low rank and sparse pattern by using concatenated feature space. In particular, the weak defects information can be separated from strong noise and the resolution contrast of the defects has significantly been improved. Ensemble iterative sparse modelling are conducted to further enhance the weak information as well as reducing the computational cost. In order to show the robustness and efficacy of the model, experiments are conducted to detect the inner debond on multiple carbon fiber reinforced polymer (CFRP) composites. A comparative analysis is presented with general OPT algorithms. Not withstand above, the proposed model has been evaluated on synthetic data and compared with other low rank and sparse matrix decomposition algorithms

    Visual Inspection Algorithms for Printed Circuit Board Patterns A SURVEY

    Get PDF
    The importance of the inspection process has been magnified by the requirements of the modern manufacturing environment. In electronics mass-production manufacturing facilities, an attempt is often made to achieve 100 % quality assurance of all parts, subassemblies, and finished goods. A variety of approaches for automated visual inspection of printed circuits have been reported over the last two decades. In this survey, algorithms and techniques for the automated inspection of printed circuit boards are examined. A classification tree for these algorithms is presented and the algorithms are grouped according to this classification. This survey concentrates mainly on image analysis and fault detection strategies, these also include the state-of-the-art techniques. Finally, limitations of current inspection systems are summarized

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Rolling contact fatigue failures in silicon nitride and their detection

    No full text
    The project investigates the feasibility of using sensor-based detection and processing systems to provide a reliable means of monitoring rolling contact fatigue (RCF) wear failures of silicon nitride in hybrid bearings. To fulfil this investigation, a decision was made early in the project to perform a series of hybrid rolling wear tests using a twin disc machine modified for use on hybrid bearing elements.The initial part of the thesis reviews the current understanding of the general wear mechanisms and RCF with a specific focus to determine the appropriate methods for their detection in hybrid bearings. The study focusses on vibration, electrostatic and acoustic emission (AE) techniques and reviews their associated sensing technologies currently deployed with a view of adapting them for use in hybrids. To provide a basis for the adaptation, an understanding of the current sensor data enhancement and feature extraction methods is presented based on a literature review.The second part describes the test equipment, its modifications and instrumentation required to capture and process the vibration, electrostatic and AE signals generated in hybrid elements. These were identified in an initial feasibility test performed on a standard twin disc machine. After a detailed description of the resulting equipment, the thesis describes the calibration tests aimed to provide base data for the development of the signal processing methods.The development of the signal processing techniques is described in detail for each of the sensor types. Time synchronous averaging (TSA) technique is used to identify the location of the signal sources along the surfaces of the specimens and the signals are enhanced by additional filtering techniques.The next part of the thesis describes the main hybrid rolling wear tests; it details the selection of the run parameters and the samples seeded with surface cracks to cover a variety of situations, the method of execution of each test run, and the techniques to analyse the results.The research establishes that two RCF fault types are produced in the silicon nitride rolling element reflecting essentially different mechanisms in their distinct and separate development; i) cracks, progressing into depth and denoted in this study as C-/Ring crack Complex (CRC) and ii) Flaking, progressing primarily on the surface by spalls. Additionally and not reported in the literature, an advanced stage of the CRC fault type composed of multiple and extensive c-cracks is interpreted as the result of induced sliding in these runs. In general, having reached an advanced stage, both CRC and Flaking faults produce significant wear in the steel counterface through abrasion, plastic deformation or 3-body abrasion in at least three possible ways, all of which are described in details

    Marine Vessel Inspection as a Novel Field for Service Robotics: A Contribution to Systems, Control Methods and Semantic Perception Algorithms.

    Get PDF
    This cumulative thesis introduces a novel field for service robotics: the inspection of marine vessels using mobile inspection robots. In this thesis, three scientific contributions are provided and experimentally verified in the field of marine inspection, but are not limited to this type of application. The inspection scenario is merely a golden thread to combine the cumulative scientific results presented in this thesis. The first contribution is an adaptive, proprioceptive control approach for hybrid leg-wheel robots, such as the robot ASGUARD described in this thesis. The robot is able to deal with rough terrain and stairs, due to the control concept introduced in this thesis. The proposed system is a suitable platform to move inside the cargo holds of bulk carriers and to deliver visual data from inside the hold. Additionally, the proposed system also has stair climbing abilities, allowing the system to move between different decks. The robot adapts its gait pattern dynamically based on proprioceptive data received from the joint motors and based on the pitch and tilt angle of the robot's body during locomotion. The second major contribution of the thesis is an independent ship inspection system, consisting of a magnetic wall climbing robot for bulkhead inspection, a particle filter based localization method, and a spatial content management system (SCMS) for spatial inspection data representation and organization. The system described in this work was evaluated in several laboratory experiments and field trials on two different marine vessels in close collaboration with ship surveyors. The third scientific contribution of the thesis is a novel approach to structural classification using semantic perception approaches. By these methods, a structured environment can be semantically annotated, based on the spatial relationships between spatial entities and spatial features. This method was verified in the domain of indoor perception (logistics and household environment), for soil sample classification, and for the classification of the structural parts of a marine vessel. The proposed method allows the description of the structural parts of a cargo hold in order to localize the inspection robot or any detected damage. The algorithms proposed in this thesis are based on unorganized 3D point clouds, generated by a LIDAR within a ship's cargo hold. Two different semantic perception methods are proposed in this thesis. One approach is based on probabilistic constraint networks; the second approach is based on Fuzzy Description Logic and spatial reasoning using a spatial ontology about the environment

    A comprehensive review of fruit and vegetable classification techniques

    Get PDF
    Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable classification methods have been developed for quality assessment and robotic harvesting but the current state-of-the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and offers significantly hyperdimensional features, which is one of the major challenges with current machine learning approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional features which require significant computational power to optimise with such features. In recent years numerous machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many different feature description methods for fruit and vegetable classification in many real-life applications. This paper presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for classifying fruit and vegetable

    Defect cluster recognition system for fabricated semiconductor wafers

    Get PDF
    The International Technology Roadmap for Semiconductors (ITRS) identifies production test data as an essential element in improving design and technology in the manufacturing process feedback loop. One of the observations made from the high-volume production test data is that dies that fail due to a systematic failure have a tendency to form certain unique patterns that manifest as defect clusters at the wafer level. Identifying and categorising such clusters is a crucial step towards manufacturing yield improvement and implementation of real-time statistical process control. Addressing the semiconductor industry's needs, this research proposes an automatic defect cluster recognition system for semiconductor wafers that achieves up to 95% accuracy (depending on the product type)
    corecore