6 research outputs found

    Intelligent fault detection and classification based on hybrid deep learning methods for Hardware-in-the-Loop test of automotive software systems

    Get PDF
    Hardware-in-the-Loop (HIL) has been recommended by ISO 26262 as an essential test bench for determining the safety and reliability characteristics of automotive software systems (ASSs). However, due to the complexity and the huge amount of data recorded by the HIL platform during the testing process, the conventional data analysis methods used for detecting and classifying faults based on the human expert are not realizable. Therefore, the development of effective means based on the historical data set is required to analyze the records of the testing process in an efficient manner. Even though data-driven fault diagnosis is superior to other approaches, selecting the appropriate technique from the wide range of Deep Learning (DL) techniques is challenging. Moreover, the training data containing the automotive faults are rare and considered highly confidential by the automotive industry. Using hybrid DL techniques, this study proposes a novel intelligent fault detection and classification (FDC) model to be utilized during the V-cycle development process, i.e., the system integration testing phase. To this end, an HIL-based real-time fault injection framework is used to generate faulty data without altering the original system model. In addition, a combination of the Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) is employed to build the model structure. In this study, eight types of sensor faults are considered to cover the most common potential faults in the signals of ASSs. As a case study, a gasoline engine system model is used to demonstrate the capabilities and advantages of the proposed method and to verify the performance of the model. The results prove that the proposed method shows better detection and classification performance compared to other standalone DL methods. Specifically, the overall detection accuracies of the proposed structure in terms of precision, recall and F1-score are 98.86%, 98.90% and 98.88%, respectively. For classification, the experimental results also demonstrate the superiority under unseen test data with an average accuracy of 98.8%

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Hybrid Data Fusion DBN for Intelligent Fault Diagnosis of Vehicle Reducers

    No full text
    Given its importance, fault diagnosis has attracted considerable attention in the literature, and several machine learning methods have been proposed to discover the characteristics of different aspects in fault diagnosis. In this paper, we propose a Hybrid Deep Belief Network (HDBN) learning model that integrates data in different ways for intelligent fault diagnosis in motor drive systems, such as a vehicle drive system. In particular, we propose three data fusion methods: data union, data join, and data hybrid, based on detailed data fusion research. Additionally, the significance of the fusion is explained from the energy perspective of the signal. In particular, the appropriate fusion methods and data structures suitable for model training requirements can help improve the accuracy of fault diagnosis. Moreover, mixed-precision training is used as a special fusion method to further improve the performance of the model. Experiments with the datasets obtained from the simulation platform demonstrate the superiority of our proposed model over the state-of-the-art methods

    Service level agreement specification for IoT application workflow activity deployment, configuration and monitoring

    Get PDF
    PhD ThesisCurrently, we see the use of the Internet of Things (IoT) within various domains such as healthcare, smart homes, smart cars, smart-x applications, and smart cities. The number of applications based on IoT and cloud computing is projected to increase rapidly over the next few years. IoT-based services must meet the guaranteed levels of quality of service (QoS) to match users’ expectations. Ensuring QoS through specifying the QoS constraints using service level agreements (SLAs) is crucial. Also because of the potentially highly complex nature of multi-layered IoT applications, lifecycle management (deployment, dynamic reconfiguration, and monitoring) needs to be automated. To achieve this it is essential to be able to specify SLAs in a machine-readable format. currently available SLA specification languages are unable to accommodate the unique characteristics (interdependency of its multi-layers) of the IoT domain. Therefore, in this research, we propose a grammar for a syntactical structure of an SLA specification for IoT. The grammar is based on a proposed conceptual model that considers the main concepts that can be used to express the requirements for most common hardware and software components of an IoT application on an end-to-end basis. We follow the Goal Question Metric (GQM) approach to evaluate the generality and expressiveness of the proposed grammar by reviewing its concepts and their predefined lists of vocabularies against two use-cases with a number of participants whose research interests are mainly related to IoT. The results of the analysis show that the proposed grammar achieved 91.70% of its generality goal and 93.43% of its expressiveness goal. To enhance the process of specifying SLA terms, We then developed a toolkit for creating SLA specifications for IoT applications. The toolkit is used to simplify the process of capturing the requirements of IoT applications. We demonstrate the effectiveness of the toolkit using a remote health monitoring service (RHMS) use-case as well as applying a user experience measure to evaluate the tool by applying a questionnaire-oriented approach. We discussed the applicability of our tool by including it as a core component of two different applications: 1) a contextaware recommender system for IoT configuration across layers; and 2) a tool for automatically translating an SLA from JSON to a smart contract, deploying it on different peer nodes that represent the contractual parties. The smart contract is able to monitor the created SLA using Blockchain technology. These two applications are utilized within our proposed SLA management framework for IoT. Furthermore, we propose a greedy heuristic algorithm to decentralize workflow activities of an IoT application across Edge and Cloud resources to enhance response time, cost, energy consumption and network usage. We evaluated the efficiency of our proposed approach using iFogSim simulator. The performance analysis shows that the proposed algorithm minimized cost, execution time, networking, and Cloud energy consumption compared to Cloud-only and edge-ward placement approaches

    Essentials of Business Analytics

    Get PDF
    corecore