3,680 research outputs found

    An Experimental Comparison of Tradeoffs in Using Compliant Manipulators for Robotic Grasping Tasks

    Get PDF
    Controllers developed for control of flexible-link robots in hybrid force-position control tasks by a new singular perturbation analysis of flexible manipulators are implemented on an experimental two-robot grasping setup. Performance criteria are defined for the grasping task. We present preliminary experimental data to show the tradeoffs between controller complexity and performance enhancement as we deal with greater flexibility. Various performance criteria are set up and experimental results are discussed within that setting. We conclude that large flexibility can be controlled and can lead to reasonable performances

    Hybrid iterative learning control of a flexible manipulator

    Get PDF
    This paper presents an investigation into the development of a hybrid control scheme with iterative learning for input tracking and end-point vibration suppression of a flexible manipulator system. The dynamic model of the system is derived using the finite element method. Initially, a collocated proportional-derivative (PD) controller using hub angle and hub velocity feedback is developed for control of rigid-body motion of the system. This is then extended to incorporate a non-collocated proportional-integral-derivative (PID) controller with iterative learning for control of vibration of the system. Simulation results of the response of the manipulator with the controllers are presented in the time and frequency domains. The performance of the hybrid iterative learning control scheme is assessed in terms of input tracking and level of vibration reduction in comparison to a conventionally designed PD-PID control scheme. The effectiveness of the control scheme in handling various payloads is also studied

    Stanford Aerospace Research Laboratory research overview

    Get PDF
    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator

    Robotic manipulation with flexible link fingers

    Get PDF
    A robot manipulator is a spatial mechanism consisting essentially of a series of bodies, called "links", connected to each other at "joints". The joints can be of various types: revolute, rotary, planar, prismatic, telescopic or combinations of these. A serial connection of the links results in an open-chain manipulator. Closed-chain manipulators result from non-serial (or parallel) connections between links. Actuators at the joints of the manipulator provide power for motion. A robot is usually not designed for a very specific or repetitive task which can be done equally well by task-specific machines. Its strength lies in its ability to handle a range of tasks by virtue of being "re-programmable". Therefore, in addition to the mechanical hardware two other elements are integral to the description of a robot: sensors and control. With the advent of micro-electronics and digital computers the availability of sensors is ever increasing and the control is usually done by software executed by computers which also collect the sensory data. It is possible to model quite accurately, the dynamics of robot manipulators for purposes of control. However, for most practical robots the models are complex and numerically intensive to calculate in real-time. Traditional analyses of robot manipulators consider the whole mechanism to be rigid. Relaxation of the assumption of rigidity leads to further complication of the dynamics of the manipulator, leading to more difficulties in control. The overall motion of the manipulator is augmented by additional motion due to the dynamics of flexibility which must be considered. Sensing is also made more difficult. However, the ability to control robots with significant structural flexibilities, referred to as flexible robots in the rest of this thesis, influences robotics in many ways. It allows for consideration of new applications, observance of less conservative structural design and performance enhancements in certain classes of robotic tasks, which will be addressed in greater detail in the sections which follow

    Control of Flexible Manipulators. Theory and Practice

    Get PDF

    Experiments in identification and control of flexible-link manipulators

    Get PDF
    Interest in the study of flexible-link manipulators for space-based applications has risen strongly in recent years. Moreover, numerous experimental results have appeared for the various problems in the modeling, identification and control of such systems. Nevertheless, relatively little literature has appeared involving laboratory verification of tuning controllers for certain types of realistic flexible-link manipulators. Specifically flexible-link manipulators which are required to maintain endpoint accuracy while manipulating loads that are possibly unknown and varying as they undergo disturbance effects from the environment and workspace. Endpoint position control of flexible-link manipulators in these areas are discussed, with laboratory setups consisting of one and two-link manipulators

    Task oriented nonlinear control laws for telerobotic assembly operations

    Get PDF
    The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented

    Impedance Control of Flexible Robot Manipulators

    Get PDF
    corecore