124 research outputs found

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Simultaneous Capture and Detumble of a Resident Space Object by a Free-Flying Spacecraft-Manipulator System

    Get PDF
    The article of record as published may be found at https://doi.org/10.3389/frobt.2019.00014A maneuver to capture and detumble an orbiting space object using a chaser spacecraft equipped with a robotic manipulator is presented. In the proposed maneuver, the capture and detumble objectives are integrated into a unified set of terminal constraints. Terminal constraints on the end-effector’s position and velocity ensure a successful capture, and a terminal constraint on the chaser’s momenta ensures a post-capture chaser-target system with zero angular momentum. The manipulator motion required to achieve a smooth, impact-free grasp is gradually stopped after capture, equalizing the momenta across all bodies, rigidly connecting the two vehicles, and completing the detumble of the newly formed chaser-target system without further actuation. To guide this maneuver, an optimization-based approach that enforces the capture and detumble terminal constraints, avoids collisions, and satisfies actuation limits is used. The solution to the guidance problem is obtained by solving a collection of convex programming problems, making the proposed guidance approach suitable for onboard implementation and real-time use. This simultaneous capture and detumble maneuver is evaluated through numerical simulations and hardware-in-the-loop experiments. Videos of the numerically simulated and experimentally demonstrated maneuvers are included as Supplementary Material

    Six-DOF Spacecraft Dynamics Simulator For Testing Translation and Attitude Control

    Full text link
    This paper presents a method to control a manipulator system grasping a rigid-body payload so that the motion of the combined system in consequence of externally applied forces to be the same as another free-floating rigid-body (with different inertial properties). This allows zero-g emulation of a scaled spacecraft prototype under the test in a 1-g laboratory environment. The controller consisting of motion feedback and force/moment feedback adjusts the motion of the test spacecraft so as to match that of the flight spacecraft, even if the latter has flexible appendages (such as solar panels) and the former is rigid. The stability of the overall system is analytically investigated, and the results show that the system remains stable provided that the inertial properties of two spacecraft are different and that an upperbound on the norm of the inertia ratio of the payload to manipulator is respected. Important practical issues such as calibration and sensitivity analysis to sensor noise and quantization are also presented

    Visual Tracking and Motion Estimation for an On-orbit Servicing of a Satellite

    Get PDF
    This thesis addresses visual tracking of a non-cooperative as well as a partially cooperative satellite, to enable close-range rendezvous between a servicer and a target satellite. Visual tracking and estimation of relative motion between a servicer and a target satellite are critical abilities for rendezvous and proximity operation such as repairing and deorbiting. For this purpose, Lidar has been widely employed in cooperative rendezvous and docking missions. Despite its robustness to harsh space illumination, Lidar has high weight and rotating parts and consumes more power, thus undermines the stringent requirements of a satellite design. On the other hand, inexpensive on-board cameras can provide an effective solution, working at a wide range of distances. However, conditions of space lighting are particularly challenging for image based tracking algorithms, because of the direct sunlight exposure, and due to the glossy surface of the satellite that creates strong reflection and image saturation, which leads to difficulties in tracking procedures. In order to address these difficulties, the relevant literature is examined in the fields of computer vision, and satellite rendezvous and docking. Two classes of problems are identified and relevant solutions, implemented on a standard computer are provided. Firstly, in the absence of a geometric model of the satellite, the thesis presents a robust feature-based method with prediction capability in case of insufficient features, relying on a point-wise motion model. Secondly, we employ a robust model-based hierarchical position localization method to handle change of image features along a range of distances, and localize an attitude-controlled (partially cooperative) satellite. Moreover, the thesis presents a pose tracking method addressing ambiguities in edge-matching, and a pose detection algorithm based on appearance model learning. For the validation of the methods, real camera images and ground truth data, generated with a laboratory tet bed similar to space conditions are used. The experimental results indicate that camera based methods provide robust and accurate tracking for the approach of malfunctioning satellites in spite of the difficulties associated with specularities and direct sunlight. Also exceptional lighting conditions associated to the sun angle are discussed, aimed at achieving fully reliable localization system in a certain mission
    • …
    corecore