6,014 research outputs found

    CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification

    Full text link
    Class imbalance classification is a challenging research problem in data mining and machine learning, as most of the real-life datasets are often imbalanced in nature. Existing learning algorithms maximise the classification accuracy by correctly classifying the majority class, but misclassify the minority class. However, the minority class instances are representing the concept with greater interest than the majority class instances in real-life applications. Recently, several techniques based on sampling methods (under-sampling of the majority class and over-sampling the minority class), cost-sensitive learning methods, and ensemble learning have been used in the literature for classifying imbalanced datasets. In this paper, we introduce a new clustering-based under-sampling approach with boosting (AdaBoost) algorithm, called CUSBoost, for effective imbalanced classification. The proposed algorithm provides an alternative to RUSBoost (random under-sampling with AdaBoost) and SMOTEBoost (synthetic minority over-sampling with AdaBoost) algorithms. We evaluated the performance of CUSBoost algorithm with the state-of-the-art methods based on ensemble learning like AdaBoost, RUSBoost, SMOTEBoost on 13 imbalance binary and multi-class datasets with various imbalance ratios. The experimental results show that the CUSBoost is a promising and effective approach for dealing with highly imbalanced datasets.Comment: CSITSS-201

    Imbalanced Ensemble Classifier for learning from imbalanced business school data set

    Full text link
    Private business schools in India face a common problem of selecting quality students for their MBA programs to achieve the desired placement percentage. Generally, such data sets are biased towards one class, i.e., imbalanced in nature. And learning from the imbalanced dataset is a difficult proposition. This paper proposes an imbalanced ensemble classifier which can handle the imbalanced nature of the dataset and achieves higher accuracy in case of the feature selection (selection of important characteristics of students) cum classification problem (prediction of placements based on the students' characteristics) for Indian business school dataset. The optimal value of an important model parameter is found. Numerical evidence is also provided using Indian business school dataset to assess the outstanding performance of the proposed classifier

    An empirical evaluation of imbalanced data strategies from a practitioner's point of view

    Full text link
    This research tested the following well known strategies to deal with binary imbalanced data on 82 different real life data sets (sampled to imbalance rates of 5%, 3%, 1%, and 0.1%): class weight, SMOTE, Underbagging, and a baseline (just the base classifier). As base classifiers we used SVM with RBF kernel, random forests, and gradient boosting machines and we measured the quality of the resulting classifier using 6 different metrics (Area under the curve, Accuracy, F-measure, G-mean, Matthew's correlation coefficient and Balanced accuracy). The best strategy strongly depends on the metric used to measure the quality of the classifier. For AUC and accuracy class weight and the baseline perform better; for F-measure and MCC, SMOTE performs better; and for G-mean and balanced accuracy, underbagging
    • …
    corecore