330 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Scale jump-aware pose graph relaxation for monocular SLAM with re-initializations

    Full text link
    Pose graph relaxation has become an indispensable addition to SLAM enabling efficient global registration of sensor reference frames under the objective of satisfying pair-wise relative transformation constraints. The latter may be given by incremental motion estimation or global place recognition. While the latter case enables loop closures and drift compensation, care has to be taken in the monocular case in which local estimates of structure and displacements can differ from reality not just in terms of noise, but also in terms of a scale factor. Owing to the accumulation of scale propagation errors, this scale factor is drifting over time, hence scale-drift aware pose graph relaxation has been introduced. We extend this idea to cases in which the relative scale between subsequent sensor frames is unknown, a situation that can easily occur if monocular SLAM enters re-initialization and no reliable overlap between successive local maps can be identified. The approach is realized by a hybrid pose graph formulation that combines the regular similarity consistency terms with novel, scale-blind constraints. We apply the technique to the practically relevant case of small indoor service robots capable of effectuating purely rotational displacements, a condition that can easily cause tracking failures. We demonstrate that globally consistent trajectories can be recovered even if multiple re-initializations occur along the loop, and present an in-depth study of success and failure cases.Comment: 8 pages, 23 figures, International Conference on Intelligent Robots and Systems 202

    Real-time 6-DOF monocular visual SLAM in a large-scale environment

    Full text link

    The simultaneous localization and mapping (SLAM):An overview

    Get PDF
    Positioning is a need for many applications related to mapping and navigation either in civilian or military domains. The significant developments in satellite-based techniques, sensors, telecommunications, computer hardware and software, image processing, etc. positively influenced to solve the positioning problem efficiently and instantaneously. Accordingly, the mentioned development empowered the applications and advancement of autonomous navigation. One of the most interesting developed positioning techniques is what is called in robotics as the Simultaneous Localization and Mapping SLAM. The SLAM problem solution has witnessed a quick improvement in the last decades either using active sensors like the RAdio Detection And Ranging (Radar) and Light Detection and Ranging (LiDAR) or passive sensors like cameras. Definitely, positioning and mapping is one of the main tasks for Geomatics engineers, and therefore it's of high importance for them to understand the SLAM topic which is not easy because of the huge documentation and algorithms available and the various SLAM solutions in terms of the mathematical models, complexity, the sensors used, and the type of applications. In this paper, a clear and simplified explanation is introduced about SLAM from a Geomatical viewpoint avoiding going into the complicated algorithmic details behind the presented techniques. In this way, a general overview of SLAM is presented showing the relationship between its different components and stages like the core part of the front-end and back-end and their relation to the SLAM paradigm. Furthermore, we explain the major mathematical techniques of filtering and pose graph optimization either using visual or LiDAR SLAM and introduce a summary of the deep learning efficient contribution to the SLAM problem. Finally, we address examples of some existing practical applications of SLAM in our reality
    • …
    corecore