8,742 research outputs found

    Ant colony optimisation and local search for bin-packing and cutting stock problems

    Get PDF
    The Bin Packing Problem and the Cutting Stock Problem are two related classes of NP-hard combinatorial optimization problems. Exact solution methods can only be used for very small instances, so for real-world problems, we have to rely on heuristic methods. In recent years, researchers have started to apply evolutionary approaches to these problems, including Genetic Algorithms and Evolutionary Programming. In the work presented here, we used an ant colony optimization (ACO) approach to solve both Bin Packing and Cutting Stock Problems. We present a pure ACO approach, as well as an ACO approach augmented with a simple but very effective local search algorithm. It is shown that the pure ACO approach can compete with existing evolutionary methods, whereas the hybrid approach can outperform the best-known hybrid evolutionary solution methods for certain problem classes. The hybrid ACO approach is also shown to require different parameter values from the pure ACO approach and to give a more robust performance across different problems with a single set of parameter values. The local search algorithm is also run with random restarts and shown to perform significantly worse than when combined with ACO

    CASP Solutions for Planning in Hybrid Domains

    Full text link
    CASP is an extension of ASP that allows for numerical constraints to be added in the rules. PDDL+ is an extension of the PDDL standard language of automated planning for modeling mixed discrete-continuous dynamics. In this paper, we present CASP solutions for dealing with PDDL+ problems, i.e., encoding from PDDL+ to CASP, and extensions to the algorithm of the EZCSP CASP solver in order to solve CASP programs arising from PDDL+ domains. An experimental analysis, performed on well-known linear and non-linear variants of PDDL+ domains, involving various configurations of the EZCSP solver, other CASP solvers, and PDDL+ planners, shows the viability of our solution.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    Translation-based Constraint Answer Set Solving

    Full text link
    We solve constraint satisfaction problems through translation to answer set programming (ASP). Our reformulations have the property that unit-propagation in the ASP solver achieves well defined local consistency properties like arc, bound and range consistency. Experiments demonstrate the computational value of this approach.Comment: Self-archived version for IJCAI'11 Best Paper Track submissio

    Generalizing backdoors

    Get PDF
    Abstract. A powerful intuition in the design of search methods is that one wants to proactively select variables that simplify the problem instance as much as possible when these variables are assigned values. The notion of “Backdoor ” variables follows this intuition. In this work we generalize Backdoors in such a way to allow more general classes of sub-solvers, both complete and heuristic. In order to do so, Pseudo-Backdoors and Heuristic-Backdoors are formally introduced and then applied firstly to a simple Multiple Knapsack Problem and secondly to a complex combinatorial optimization problem in the area of stochastic inventory control. Our preliminary computational experience shows the effectiveness of these approaches that are able to produce very low run times and — in the case of Heuristic-Backdoors — high quality solutions by employing very simple heuristic rules such as greedy local search strategies.

    Solving XCSP problems by using Gecode

    Get PDF
    Gecode is one of the most efficient libraries that can be used for constraint solving. However, using it requires dealing with C++ programming details. On the other hand several formats for representing constraint networks have been proposed. Among them, XCSP has been proposed as a format based on XML which allows us to represent constraints defined either extensionally or intensionally, permits global constraints and has been the standard format of the international competition of constraint satisfaction problems solvers. In this paper we present a plug-in for solving problems specified in XCSP by exploiting the Gecode solver. This is done by dynamically translating constraints into Gecode library calls, thus avoiding the need to interact with C++.Comment: 5 pages, http://ceur-ws.org/Vol-810 CILC 201

    Hybrid tractability of soft constraint problems

    Get PDF
    The constraint satisfaction problem (CSP) is a central generic problem in computer science and artificial intelligence: it provides a common framework for many theoretical problems as well as for many real-life applications. Soft constraint problems are a generalisation of the CSP which allow the user to model optimisation problems. Considerable effort has been made in identifying properties which ensure tractability in such problems. In this work, we initiate the study of hybrid tractability of soft constraint problems; that is, properties which guarantee tractability of the given soft constraint problem, but which do not depend only on the underlying structure of the instance (such as being tree-structured) or only on the types of soft constraints in the instance (such as submodularity). We present several novel hybrid classes of soft constraint problems, which include a machine scheduling problem, constraint problems of arbitrary arities with no overlapping nogoods, and the SoftAllDiff constraint with arbitrary unary soft constraints. An important tool in our investigation will be the notion of forbidden substructures.Comment: A full version of a CP'10 paper, 26 page

    Design of sustainable energy systems : a new challenge for Engineering Education

    Get PDF
    This paper presents the main features of the master-level programme in “EcoEnergy” offered as a full-time one year course at “Institut National Polytechnique of Toulouse” in order to provide engineers with a state-of-the-art education in the area of advanced energy technologies and systems. It is based on an original and equilibrated combination of process systems engineering and electrical engineering disciplines, with an interdisciplinary problem-solving approach necessary for identifying sustainable solutions in the energy sector. More precisely, the students learn how to design, develop and implement energy systems and technologies in various industrial sectors for which efficient management of energy issues is vital to remain competitive
    corecore