4,768 research outputs found

    Hybrid Branching-Time Logics

    Full text link
    Hybrid branching-time logics are introduced as extensions of CTL-like logics with state variables and the downarrow-binder. Following recent work in the linear framework, only logics with a single variable are considered. The expressive power and the complexity of satisfiability of the resulting logics is investigated. As main result, the satisfiability problem for the hybrid versions of several branching-time logics is proved to be 2EXPTIME-complete. These branching-time logics range from strict fragments of CTL to extensions of CTL that can talk about the past and express fairness-properties. The complexity gap relative to CTL is explained by a corresponding succinctness result. To prove the upper bound, the automata-theoretic approach to branching-time logics is extended to hybrid logics, showing that non-emptiness of alternating one-pebble Buchi tree automata is 2EXPTIME-complete.Comment: An extended abstract of this paper was presented at the International Workshop on Hybrid Logics (HyLo 2007

    On the Expressive Power of Hybrid Branching-Time Logics

    Get PDF
    Hybrid branching-time logics are a powerful extension of branching-time logics like CTL, CTL^* or even the modal mu-calculus through the addition of binders, jumps and variable tests. Their expressiveness is not restricted by bisimulation-invariance anymore. Hence, they do not retain the tree model property, and the finite model property is equally lost. Their satisfiability problems are typically undecidable, their model checking problems (on finite models) are decidable with complexities ranging from polynomial to non-elementary time. In this paper we study the expressive power of such hybrid branching-time logics beyond some earlier results about their invariance under hybrid bisimulations. In particular, we aim to extend the hierarchy of non-hybrid branching-time logics CTL, CTL^+, CTL^* and the modal mu-calculus to their hybrid extensions. We show that most separation results can be transferred to the hybrid world, even though the required techniques become a bit more involved. We also present some collapse results for restricted classes of models that are especially worth investigating, namely linear, tree-shaped and finite models

    On the Hybrid Extension of CTL and CTL+

    Full text link
    The paper studies the expressivity, relative succinctness and complexity of satisfiability for hybrid extensions of the branching-time logics CTL and CTL+ by variables. Previous complexity results show that only fragments with one variable do have elementary complexity. It is shown that H1CTL+ and H1CTL, the hybrid extensions with one variable of CTL+ and CTL, respectively, are expressively equivalent but H1CTL+ is exponentially more succinct than H1CTL. On the other hand, HCTL+, the hybrid extension of CTL with arbitrarily many variables does not capture CTL*, as it even cannot express the simple CTL* property EGFp. The satisfiability problem for H1CTL+ is complete for triply exponential time, this remains true for quite weak fragments and quite strong extensions of the logic

    Linear and Branching System Metrics

    Get PDF
    We extend the classical system relations of trace\ud inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as elements of arbitrary metric spaces.\ud \ud Trace inclusion and equivalence give rise to asymmetrical and symmetrical linear distances, while simulation and bisimulation give rise to asymmetrical and symmetrical branching distances. We study the relationships among these distances, and we provide a full logical characterization of the distances in terms of quantitative versions of LTL and μ-calculus. We show that, while trace inclusion (resp. equivalence) coincides with simulation (resp. bisimulation) for deterministic boolean transition systems, linear\ud and branching distances do not coincide for deterministic metric transition systems. Finally, we provide algorithms for computing the distances over finite systems, together with a matching lower complexity bound

    On Bisimulations for Description Logics

    Full text link
    We study bisimulations for useful description logics. The simplest among the considered logics is ALCreg\mathcal{ALC}_{reg} (a variant of PDL). The others extend that logic with inverse roles, nominals, quantified number restrictions, the universal role, and/or the concept constructor for expressing the local reflexivity of a role. They also allow role axioms. We give results about invariance of concepts, TBoxes and ABoxes, preservation of RBoxes and knowledge bases, and the Hennessy-Milner property w.r.t. bisimulations in the considered description logics. Using the invariance results we compare the expressiveness of the considered description logics w.r.t. concepts, TBoxes and ABoxes. Our results about separating the expressiveness of description logics are naturally extended to the case when instead of ALCreg\mathcal{ALC}_{reg} we have any sublogic of ALCreg\mathcal{ALC}_{reg} that extends ALC\mathcal{ALC}. We also provide results on the largest auto-bisimulations and quotient interpretations w.r.t. such equivalence relations. Such results are useful for minimizing interpretations and concept learning in description logics. To deal with minimizing interpretations for the case when the considered logic allows quantified number restrictions and/or the constructor for the local reflexivity of a role, we introduce a new notion called QS-interpretation, which is needed for obtaining expected results. By adapting Hopcroft's automaton minimization algorithm and the Paige-Tarjan algorithm, we give efficient algorithms for computing the partition corresponding to the largest auto-bisimulation of a finite interpretation.Comment: 42 page

    Automated Synthesis of Tableau Calculi

    Full text link
    This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.Comment: 32 page
    corecore