1,374 research outputs found

    Brain-Computer Interface meets ROS: A robotic approach to mentally drive telepresence robots

    Get PDF
    This paper shows and evaluates a novel approach to integrate a non-invasive Brain-Computer Interface (BCI) with the Robot Operating System (ROS) to mentally drive a telepresence robot. Controlling a mobile device by using human brain signals might improve the quality of life of people suffering from severe physical disabilities or elderly people who cannot move anymore. Thus, the BCI user is able to actively interact with relatives and friends located in different rooms thanks to a video streaming connection to the robot. To facilitate the control of the robot via BCI, we explore new ROS-based algorithms for navigation and obstacle avoidance, making the system safer and more reliable. In this regard, the robot can exploit two maps of the environment, one for localization and one for navigation, and both can be used also by the BCI user to watch the position of the robot while it is moving. As demonstrated by the experimental results, the user's cognitive workload is reduced, decreasing the number of commands necessary to complete the task and helping him/her to keep attention for longer periods of time.Comment: Accepted in the Proceedings of the 2018 IEEE International Conference on Robotics and Automatio

    Review of real brain-controlled wheelchairs

    Get PDF
    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future

    BCI-Based Navigation in Virtual and Real Environments

    Get PDF
    A Brain-Computer Interface (BCI) is a system that enables people to control an external device with their brain activity, without the need of any muscular activity. Researchers in the BCI field aim to develop applications to improve the quality of life of severely disabled patients, for whom a BCI can be a useful channel for interaction with their environment. Some of these systems are intended to control a mobile device (e. g. a wheelchair). Virtual Reality is a powerful tool that can provide the subjects with an opportunity to train and to test different applications in a safe environment. This technical review will focus on systems aimed at navigation, both in virtual and real environments.This work was partially supported by the Innovation, Science and Enterprise Council of the Junta de Andalucía (Spain), project P07-TIC-03310, the Spanish Ministry of Science and Innovation, project TEC 2011-26395 and by the European fund ERDF

    Towards transparent telepresence

    Get PDF
    It is proposed that the concept of transparent telepresence can be closely approached through high fidelity technological mediation. It is argued that the matching of the system capabilities to those of the human user will yield a strong sense of immersion and presence at a remote site. Some applications of such a system are noted. The concept is explained and critical system elements are described together with an overview of some of the necessary system specifications

    Brain-Computer Interface meets ROS: A robotic approach to mentally drive telepresence robots

    Get PDF
    This paper shows and evaluates a novel approach to integrate a non-invasive Brain-Computer Interface (BCI) with the Robot Operating System (ROS) to mentally drive a telepresence robot. Controlling a mobile device by using human brain signals might improve the quality of life of people suffering from severe physical disabilities or elderly people who cannot move anymore. Thus, the BCI user can actively interact with relatives and friends located in different rooms thanks to a video streaming connection to the robot. To facilitate the control of the robot via BCI, we explore new ROS-based algorithms for navigation and obstacle avoidance in order to make the system safer and more reliable. In this regard, the robot exploits two maps of the environment, one for localization and one for navigation, and both are used as additional visual feedback for the BCI user to control the robot position. Experimental results show a decrease of the number of commands needed to complete the navigation task, suggesting a reduction user’s cognitive workload. The novelty of this work is to provide a first evidence of an integration between BCI and ROS that can simplify and foster the development of software for BCI driven robotics devices

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    From teleoperation to the cognitive human-robot interface

    Get PDF
    Robots are slowly moving from factories to mines, construction sites, public places and homes. This new type of robot or robotized working machine – field and service robots (FSR) – should be capable of performing different kinds of tasks in unstructured changing environments, not only among humans but through continuous interaction with humans. The main requirements for an FSR are mobility, advanced perception capabilities, high "intelligence" and easy interaction with humans. Although mobility and perception capabilities are no longer bottlenecks, they can nevertheless still be greatly improved. The main bottlenecks are intelligence and the human - robot interface (HRI). Despite huge efforts in "artificial intelligence" research, the robots and computers are still very "stupid" and there are no major advancements on the horizon. This emphasizes the importance of the HRI. In the subtasks, where high-level cognition or intelligence is needed, the robot has to ask for help from the operator. In addition to task commands and supervision, the HRI has to provide the possibility of exchanging information about the task and environment through continuous dialogue and even methods for direct teleoperation. The thesis describes the development from teleoperation to service robot interfaces and analyses the usability aspects of both teleoperation/telepresence systems and robot interfaces based on high-level cognitive interaction. The analogue in the development of teleoperation interfaces and HRIs is also pointed out. The teleoperation and telepresence interfaces are studied on the basis of a set of experiments in which the different enhancement-level telepresence systems were tested in different tasks of a driving type. The study is concluded by comparing the usability aspects and the feeling of presence in a telepresence system. HRIs are studied with an experimental service robot WorkPartner. Different kinds of direct teleoperation, dialogue and spatial information interfaces are presented and tested. The concepts of cognitive interface and common presence are presented. Finally, the usability aspects of a human service robot interface are discussed and evaluated.reviewe

    Using Variable Natural Environment Brain-Computer Interface Stimuli for Real-time Humanoid Robot Navigation

    Full text link
    This paper addresses the challenge of humanoid robot teleoperation in a natural indoor environment via a Brain-Computer Interface (BCI). We leverage deep Convolutional Neural Network (CNN) based image and signal understanding to facilitate both real-time bject detection and dry-Electroencephalography (EEG) based human cortical brain bio-signals decoding. We employ recent advances in dry-EEG technology to stream and collect the cortical waveforms from subjects while they fixate on variable Steady State Visual Evoked Potential (SSVEP) stimuli generated directly from the environment the robot is navigating. To these ends, we propose the use of novel variable BCI stimuli by utilising the real-time video streamed via the on-board robot camera as visual input for SSVEP, where the CNN detected natural scene objects are altered and flickered with differing frequencies (10Hz, 12Hz and 15Hz). These stimuli are not akin to traditional stimuli - as both the dimensions of the flicker regions and their on-screen position changes depending on the scene objects detected. On-screen object selection via such a dry-EEG enabled SSVEP methodology, facilitates the on-line decoding of human cortical brain signals, via a specialised secondary CNN, directly into teleoperation robot commands (approach object, move in a specific direction: right, left or back). This SSVEP decoding model is trained via a priori offline experimental data in which very similar visual input is present for all subjects. The resulting classification demonstrates high performance with mean accuracy of 85% for the real-time robot navigation experiment across multiple test subjects.Comment: Accepted as a full paper at the 2019 International Conference on Robotics and Automation (ICRA
    corecore