91,025 research outputs found

    The hybrid brain-computer interface: a bridge to assistive technology?

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Brain-Computer Interfaces (BCIs) can be extended by other input signals to form a so-called hybrid BCI (hBCI). Such an hBCI allows the processing of several input signals with at least one brain signal for control purposes, i.e. communication and environmental control. This work shows the principle, technology and application of hBCIs and discusses future objectives.EC/FP7/224631/EU/Tools for Brain-Computer Interaction/TOBIEC/FP7/288566/EU/Brain-neural computer interfaces on track to home – Development of a practical generation of BNCI for independent home use/BackHom

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Insomnia : the affordance of hybrid media in visualising a sleep disorder

    Get PDF
    The integration of visual and numerical abstraction in contemporary audio-visual communication has become increasingly prevalent. This increase reflects the evolution of computational machines from simple data processors. Computation and interface have augmented our senses and converged algorithmic logic with cultural techniques to form hybrid channels of communication. These channels are fluid and mutable, allowing creatives to explore and disseminate knowledge through iterative media practice. Insomnia is an auto-ethnographic case study that examines the affordance of merging Brain-Computer Interfaces (BCIs) and node- based programming software (TouchDesigner), as a hybrid media system (McMullan, 2020). As a system, Insomnia compiles my archived brain activity data and processes it through a custom designed generative visualisation interface. Documenting and ‘processing’ a sleep disorder is filtered through key concepts of media archaeology, cultural techniques, and practice-led research allowing Insomnia to inform discussion of the affordance of hybrid media. Insomnia is presented as a virtual exhibition with a supporting exegesis. The methodology and outcomes of the project form a framework that bridges science communication and creative practice and points to continued development for interactive installation design

    A hybrid brain-computer interface combining the EEG and NIRS

    Get PDF
    Compared to the conventional brain-computer interface (BCI) system, the hybrid BCI provides a more efficient way for the communication between the brain and the external device. The Electroencephalography (EEG) signal and the change of oxygenation in the brain are two prevailing approaches used in the BCI. However, single physiological signal couldn't provide enough information for a satisfied BCI. This paper proposes a hybrid BCI system based on the combination of the EEG signal and the cerebral blood oxygen changes measured by the near-infrared spectroscopy system (NIRS) to detect the state of motor imagery (MI). The result shows that the average recognition rate can achieve above 75.04% and the highest rate 91.11%, which are higher than when only using EEG or NIRS. It suggests that the proposed hybrid BCI system has a good performance in the combination of these two different signals. Further investigation may help develop better BCIs with high accuracy and significant efficiency. © 2012 IEEE.published_or_final_versio

    A Hybrid Brain-Computer Interface-Based Mail Client

    Get PDF
    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method

    Recent and upcoming BCI progress: overview, analysis, and recommendations

    Get PDF
    Brain–computer interfaces (BCIs) are finally moving out of the laboratory and beginning to gain acceptance in real-world situations. As BCIs gain attention with broader groups of users, including persons with different disabilities and healthy users, numerous practical questions gain importance. What are the most practical ways to detect and analyze brain activity in field settings? Which devices and applications are most useful for different people? How can we make BCIs more natural and sensitive, and how can BCI technologies improve usability? What are some general trends and issues, such as combining different BCIs or assessing and comparing performance? This book chapter provides an overview of the different sections of this book, providing a summary of how authors address these and other questions. We also present some predictions and recommendations that ensue from our experience from discussing these and other issues with our authors and other researchers and developers within the BCI community. We conclude that, although some directions are hard to predict, the field is definitely growing and changing rapidly, and will continue doing so in the next several years

    Augmenting communication, emotion expression and interaction capabilities of individuals with cerebral palsy

    Get PDF
    !c 2014Verlag der Technischen Universit¨at Graz. Providing individuals with cerebral palsy (CP) tools to communicate and interact with the environment independently and reliably since childhood would allow for a more active participation in education and social life. We outline first steps towards the development of such a hybrid brain-computer interface-based (BCI) communication tool.This work was supported by the FP7 Framework EU Research Project ABC (No. 287774). This paper only reflects the authors views and funding agencies are not liable for any use that may be made of the information contained herein.Peer Reviewe

    Brain-Switches for Asynchronous Brain−Computer Interfaces: A Systematic Review

    Get PDF
    A brain–computer interface (BCI) has been extensively studied to develop a novel communication system for disabled people using their brain activities. An asynchronous BCI system is more realistic and practical than a synchronous BCI system, in that, BCI commands can be generated whenever the user wants. However, the relatively low performance of an asynchronous BCI system is problematic because redundant BCI commands are required to correct false-positive operations. To significantly reduce the number of false-positive operations of an asynchronous BCI system, a two-step approach has been proposed using a brain-switch that first determines whether the user wants to use an asynchronous BCI system before the operation of the asynchronous BCI system. This study presents a systematic review of the state-of-the-art brain-switch techniques and future research directions. To this end, we reviewed brain-switch research articles published from 2000 to 2019 in terms of their (a) neuroimaging modality, (b) paradigm, (c) operation algorithm, and (d) performance
    corecore