240 research outputs found

    Spatial coverage in routing and path planning problems

    Get PDF
    Routing and path planning problems that involve spatial coverage have received increasing attention in recent years in different application areas. Spatial coverage refers to the possibility of considering nodes that are not directly served by a vehicle as visited for the purpose of the objective function or constraints. Despite similarities between the underlying problems, solution approaches have been developed in different disciplines independently, leading to different terminologies and solution techniques. This paper proposes a unified view of the approaches: Based on a formal introduction of the concept of spatial coverage in vehicle routing, it presents a classification scheme for core problem features and summarizes problem variants and solution concepts developed in the domains of operations research and robotics. The connections between these related problem classes offer insights into common underlying structures and open possibilities for developing new applications and algorithms

    Well-tuned algorithms for the team orienteering problem with time windows

    Get PDF
    National Research Foundation (NRF) Singapore under Corp Lab @ University scheme; Fujitsu Lt

    Applications of biased-randomized algorithms and simheuristics in integrated logistics

    Get PDF
    Transportation and logistics (T&L) activities play a vital role in the development of many businesses from different industries. With the increasing number of people living in urban areas, the expansion of on-demand economy and e-commerce activities, the number of services from transportation and delivery has considerably increased. Consequently, several urban problems have been potentialized, such as traffic congestion and pollution. Several related problems can be formulated as a combinatorial optimization problem (COP). Since most of them are NP-Hard, the finding of optimal solutions through exact solution methods is often impractical in a reasonable amount of time. In realistic settings, the increasing need for 'instant' decision-making further refutes their use in real life. Under these circumstances, this thesis aims at: (i) identifying realistic COPs from different industries; (ii) developing different classes of approximate solution approaches to solve the identified T&L problems; (iii) conducting a series of computational experiments to validate and measure the performance of the developed approaches. The novel concept of 'agile optimization' is introduced, which refers to the combination of biased-randomized heuristics with parallel computing to deal with real-time decision-making.Las actividades de transporte y logística (T&L) juegan un papel vital en el desarrollo de muchas empresas de diferentes industrias. Con el creciente número de personas que viven en áreas urbanas, la expansión de la economía a lacarta y las actividades de comercio electrónico, el número de servicios de transporte y entrega ha aumentado considerablemente. En consecuencia, se han potencializado varios problemas urbanos, como la congestión del tráfico y la contaminación. Varios problemas relacionados pueden formularse como un problema de optimización combinatoria (COP). Dado que la mayoría de ellos son NP-Hard, la búsqueda de soluciones óptimas a través de métodos de solución exactos a menudo no es práctico en un período de tiempo razonable. En entornos realistas, la creciente necesidad de una toma de decisiones "instantánea" refuta aún más su uso en la vida real. En estas circunstancias, esta tesis tiene como objetivo: (i) identificar COP realistas de diferentes industrias; (ii) desarrollar diferentes clases de enfoques de solución aproximada para resolver los problemas de T&L identificados; (iii) realizar una serie de experimentos computacionales para validar y medir el desempeño de los enfoques desarrollados. Se introduce el nuevo concepto de optimización ágil, que se refiere a la combinación de heurísticas aleatorias sesgadas con computación paralela para hacer frente a la toma de decisiones en tiempo real.Les activitats de transport i logística (T&L) tenen un paper vital en el desenvolupament de moltes empreses de diferents indústries. Amb l'augment del nombre de persones que viuen a les zones urbanes, l'expansió de l'economia a la carta i les activitats de comerç electrònic, el nombre de serveis del transport i el lliurament ha augmentat considerablement. En conseqüència, s'han potencialitzat diversos problemes urbans, com ara la congestió del trànsit i la contaminació. Es poden formular diversos problemes relacionats com a problema d'optimització combinatòria (COP). Com que la majoria són NP-Hard, la recerca de solucions òptimes mitjançant mètodes de solució exactes sovint no és pràctica en un temps raonable. En entorns realistes, la creixent necessitat de prendre decisions "instantànies" refuta encara més el seu ús a la vida real. En aquestes circumstàncies, aquesta tesi té com a objectiu: (i) identificar COP realistes de diferents indústries; (ii) desenvolupar diferents classes d'aproximacions aproximades a la solució per resoldre els problemes identificats de T&L; (iii) la realització d'una sèrie d'experiments computacionals per validar i mesurar el rendiment dels enfocaments desenvolupats. S'introdueix el nou concepte d'optimització àgil, que fa referència a la combinació d'heurístiques esbiaixades i aleatòries amb informàtica paral·lela per fer front a la presa de decisions en temps real.Tecnologies de la informació i de xarxe

    Two-Stage Vehicle Routing Problems with Profits and Buffers: Analysis and Metaheuristic Optimization Algorithms

    Get PDF
    This thesis considers the Two-Stage Vehicle Routing Problem (VRP) with Profits and Buffers, which generalizes various optimization problems that are relevant for practical applications, such as the Two-Machine Flow Shop with Buffers and the Orienteering Problem. Two optimization problems are considered for the Two-Stage VRP with Profits and Buffers, namely the minimization of total time while respecting a profit constraint and the maximization of total profit under a budget constraint. The former generalizes the makespan minimization problem for the Two-Machine Flow Shop with Buffers, whereas the latter is comparable to the problem of maximizing score in the Orienteering Problem. For the three problems, a theoretical analysis is performed regarding computational complexity, existence of optimal permutation schedules (where all vehicles traverse the same nodes in the same order) and potential gaps in attainable solution quality between permutation schedules and non-permutation schedules. The obtained theoretical results are visualized in a table that gives an overview of various subproblems belonging to the Two-Stage VRP with Profits and Buffers, their theoretical properties and how they are connected. For the Two-Machine Flow Shop with Buffers and the Orienteering Problem, two metaheuristics 2BF-ILS and VNSOP are presented that obtain favorable results in computational experiments when compared to other state-of-the-art algorithms. For the Two-Stage VRP with Profits and Buffers, an algorithmic framework for Iterative Search Algorithms with Variable Neighborhoods (ISAVaN) is proposed that generalizes aspects from 2BF-ILS as well as VNSOP. Various algorithms derived from that framework are evaluated in an experimental study. The evaluation methodology used for all computational experiments in this thesis takes the performance during the run time into account and demonstrates that algorithms for structurally different problems, which are encompassed by the Two-Stage VRP with Profits and Buffers, can be evaluated with similar methods. The results show that the most suitable choice for the components in these algorithms is dependent on the properties of the problem and the considered evaluation criteria. However, a number of similarities to algorithms that perform well for the Two-Machine Flow Shop with Buffers and the Orienteering Problem can be identified. The framework unifies these characteristics, providing a spectrum of algorithms that can be adapted to the specifics of the considered Vehicle Routing Problem.:1 Introduction 2 Background 2.1 Problem Motivation 2.2 Formal Definition of the Two-Stage VRP with Profits and Buffers 2.3 Review of Literature on Related Vehicle Routing Problems 2.3.1 Two-Stage Vehicle Routing Problems 2.3.2 Vehicle Routing Problems with Profits 2.3.3 Vehicle Routing Problems with Capacity- or Resource-based Restrictions 2.4 Preliminary Remarks on Subsequent Chapters 3 The Two-Machine Flow Shop Problem with Buffers 3.1 Review of Literature on Flow Shop Problems with Buffers 3.1.1 Algorithms and Metaheuristics for Flow Shops with Buffers 3.1.2 Two-Machine Flow Shop Problems with Buffers 3.1.3 Blocking Flow Shops 3.1.4 Non-Permutation Schedules 3.1.5 Other Extensions and Variations of Flow Shop Problems 3.2 Theoretical Properties 3.2.1 Computational Complexity 3.2.2 The Existence of Optimal Permutation Schedules 3.2.3 The Gap Between Permutation Schedules an Non-Permutation 3.3 A Modification of the NEH Heuristic 3.4 An Iterated Local Search for the Two-Machine Flow Shop Problem with Buffers 3.5 Computational Evaluation 3.5.1 Algorithms for Comparison 3.5.2 Generation of Problem Instances 3.5.3 Parameter Values 3.5.4 Comparison of 2BF-ILS with other Metaheuristics 3.5.5 Comparison of 2BF-OPT with NEH 3.6 Summary 4 The Orienteering Problem 4.1 Review of Literature on Orienteering Problems 4.2 Theoretical Properties 4.3 A Variable Neighborhood Search for the Orienteering Problem 4.4 Computational Evaluation 4.4.1 Measurement of Algorithm Performance 4.4.2 Choice of Algorithms for Comparison 4.4.3 Problem Instances 4.4.4 Parameter Values 4.4.5 Experimental Setup 4.4.6 Comparison of VNSOP with other Metaheuristics 4.5 Summary 5 The Two-Stage Vehicle Routing Problem with Profits and Buffers 5.1 Theoretical Properties of the Two-Stage VRP with Profits and Buffers 5.1.1 Computational Complexity of the General Problem 5.1.2 Existence of Permutation Schedules in the Set of Optimal Solutions 5.1.3 The Gap Between Permutation Schedules an Non-Permutation Schedules 5.1.4 Remarks on Restricted Cases 5.1.5 Overview of Theoretical Results 5.2 A Metaheuristic Framework for the Two-Stage VRP with Profits and Buffers 5.3 Experimental Results 5.3.1 Problem Instances 5.3.2 Experimental Results for O_{max R, Cmax≤B} 5.3.3 Experimental Results for O_{min Cmax, R≥Q} 5.4 Summary Bibliography List of Figures List of Tables List of Algorithm

    Emergency rapid mapping with drones: models and solution approaches for offline and online mission planning

    Get PDF
    Die Verfügbarkeit von unbemannten Luftfahrzeugen (unmanned aerial vehicles oder UAVs) und die Fortschritte in der Entwicklung leichtgewichtiger Sensorik eröffnen neue Möglichkeiten für den Einsatz von Fernerkundungstechnologien zur Schnellerkundung in Großschadenslagen. Hier ermöglichen sie es beispielsweise nach Großbränden, Einsatzkräften in kurzer Zeit ein erstes Lagebild zur Verfügung zu stellen. Die begrenzte Flugdauer der UAVs wie auch der Bedarf der Einsatzkräfte nach einer schnellen Ersteinschätzung bedeuten jedoch, dass die betroffenen Gebiete nur stichprobenartig überprüft werden können. In Kombination mit Interpolationsverfahren ermöglichen diese Stichproben anschließend eine Abschätzung der Verteilung von Gefahrstoffen. Die vorliegende Arbeit befasst sich mit dem Problem der Planung von UAV-Missionen, die den Informationsgewinn im Notfalleinsatz maximieren. Das Problem wird dabei sowohl in der Offline-Variante, die Missionen vor Abflug bestimmt, als auch in der Online-Variante, bei der die Pläne während des Fluges der UAVs aktualisiert werden, untersucht. Das übergreifende Ziel ist die Konzeption effizienter Modelle und Verfahren, die Informationen über die räumliche Korrelation im beobachteten Gebiet nutzen, um in zeitkritischen Situationen Lösungen von hoher Vorhersagegüte zu bestimmen. In der Offline-Planung wird das generalized correlated team orienteering problem eingeführt und eine zweistufige Heuristik zur schnellen Bestimmung explorativer UAV-Missionen vorgeschlagen. In einer umfangreichen Studie wird die Leistungsfähigkeit und Konkurrenzfähigkeit der Heuristik hinsichtlich Rechenzeit und Lösungsqualität bestätigt. Anhand von in dieser Arbeit neu eingeführten Benchmarkinstanzen wird der höhere Informationsgewinn der vorgeschlagenen Modelle im Vergleich zu verwandten Konzepten aufgezeigt. Im Bereich der Online-Planung wird die Kombination von lernenden Verfahren zur Modellierung der Schadstoffe mit Planungsverfahren, die dieses Wissen nutzen, um Missionen zu verbessern, untersucht. Hierzu wird eine breite Spanne von Lösungsverfahren aus unterschiedlichen Disziplinen klassifiziert und um neue effiziente Modellierungsvarianten für die Schnellerkundung ergänzt. Die Untersuchung im Rahmen einer ereignisdiskreten Simulation zeigt, dass vergleichsweise einfache Approximationen räumlicher Zusammenhänge in sehr kurzer Zeit Lösungen hoher Qualität ermöglichen. Darüber hinaus wird die höhere Robustheit genauerer, aber aufwändigerer Modelle und Lösungskonzepte demonstriert

    Optimización de Rutas basadas en Soft Computing para Movilidad Inteligente

    Get PDF
    La movilidad y transporte de pasajeros y mercancías es uno de los principales desafíos para el desarrollo de islas, ciudades y territorios. La prosperidad, competitividad y sostenibilidad de múltiples áreas económicas se ven afectadas por la movilidad. El crecimiento de la población, la capacidad limitada de los sistemas e infraestructuras de transporte y el impacto medioambiental del transporte fuerza a los territorios en el desarrollo de una movilidad sostenible y efectiva. En este complejo escenario, un territorio con una gestión del transporte y movilidad sostenible y eficiente ofrece a los ciudadanos una mejor calidad de vida. La transformación digital y las TIC impulsan la mejora de los servicios de movilidad para los ciudadanos, ayudan a gestionar correctamente la demanda en las redes de transporte y generan valor económico y ambiental. El surgimiento de la movilidad inteligente integra el sistema de transporte, las infraestructuras y las tecnologías para hacer que el transporte de pasajeros y mercancías sea eficiente, accesible, más seguro y limpio. Por lo tanto, las estrategias de movilidad inteligente deben ser capaces de proporcionar beneficios económicos y ambientales tangibles y mejorar la calidad del transporte de mercancías y pasajeros. Significa tomar acciones en múltiples frentes; gestión eficiente de la carga y la movilidad de pasajeros, reducción del impacto medioambiental, mejora de la planificación y la eficiencia del transporte público, reducción de la congestión, optimización del uso de la infraestructura física, entre otros. Una de las operaciones clave para los servicios de movilidad es la planificación de rutas. Esta actividad operativa incluye principalmente dos modos de transporte, mercancías y pasajeros. La mayoría de los transportes de mercancías y pasajeros se realizan a través de transporte por carretera. Las decisiones tomadas con respecto a las operaciones de planificación de rutas afectan económica y ambientalmente, y en general a la calidad de vida de los ciudadanos en los territorios en los que se desarrollan. Las operaciones de planificación de rutas se pueden optimizar para mejorar diferentes aspectos como la calidad del servicio, costes y flexibilidad del mismo, consumo de energía, impacto medioambiental, sostenibilidad, entre otros. La tarea de abordar las operaciones de planificación de rutas da lugar a la aparición de complejos problemas de optimización combinatoria que requieren considerar múltiples requisitos, restricciones, fuentes de información, entre otros. En la mayoría de los casos, estos problemas de optimización se clasifican como NP-duros con respecto a su complejidad computacional. Esta clase de problemas requiere enfoques de optimización eficientes y estrategias inteligentes para obtener soluciones de alta calidad y evitar grandes tiempos de cálculo. En este sentido, los enfoques de optimización aproximados, como las heurísticas y metaheurísticas, y las técnicas inteligentes inherentes a la Inteligencia Artificial y la Soft Computing han demostrado ser métodos efectivos y eficientes para resolver complejos problemas de planificación de rutas. Esta tesis presentada en la modalidad de compendio de publicaciones tiene como objetivo diseñar, implementar y validar procedimientos de optimización simples, eficientes y flexibles basados ​​en Inteligencia Artificial y Soft Computing dedicados a mejorar las soluciones de planificación de rutas en los contextos de transporte de mercancías, planificación personalizada de rutas turísticas y transporte eco-eficiente de residuos reciclables. Se han propuesto varios enfoques de solución para resolver problemas como Vehicle Routing Problem with Time Windows, Periodic Vehicle Routing Problem with Time Windows, Team Orienteering Problem with Time Windows, Tourist Trip Design Problem y variantes del mundo real y nuevas extensiones de los problemas mencionados. La calidad del servicio, la orientación al cliente, la imprecisión e incertidumbre en la información y la ecoeficiencia son criterios considerados en los problemas de planificación de rutas identificados. Los experimentos computacionales han demostrado que los métodos y técnicas propuestos son adecuados para obtener soluciones de alta calidad en tiempos computacionales cortos y pueden incorporarse como módulos en sistemas de transporte inteligentes

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality

    Incorporating A New Class of Uncertainty in Disaster Relief Logistics Planning

    Get PDF
    In recent years, there has been a growing interest among emergency managers in using Social data in disaster response planning. However, the trustworthiness and reliability of posted information are two of the most significant concerns, because much of the user-generated data is initially not verified. Therefore, a key tradeoff exists for emergency managers when considering whether to incorporate Social data in disaster planning efforts. By considering Social data, a larger number of needs can be identified in a shorter amount of time, potentially enabling a faster response and satisfying a class of demand that might not otherwise be discovered. However, some critical resources can be allocated to inaccurate demands in this manner. This dissertation research is dedicated to evaluating this tradeoff by creating routing plans while considering two separate streams of information: (i) unverified data describing demand that is not known with certainty, obtained from Social media platforms and (ii) verified data describing demand known with certainty, obtained from trusted traditional sources (i.e. on the ground assessment teams). These projects extend previous models in the disaster relief routing literature that address uncertainty in demand. More broadly, this research contributes to the body of literature that addresses questions surrounding the usefulness of Social data for response planning
    corecore