413 research outputs found

    A framework for modular construction and evaluation of metaheuristics

    Get PDF
    This paper presents MAHF, a software framework for the highly flexible construction of metaheuristics from individual components and the subsequent evaluation of these algorithms. At that, MAHF is developed specifically for the experimental analysis of the algorithmic behaviour during the optimization process with a focus on the influences of the algorithm’s components. Furthermore, uncommon and incompletely examined operators or frameworks of “novel” metaheuristics are included as well, so that their usefulness can be assessed. In the following, we will elaborate on MAHF’s structure and its general goals and application possibilities. Concerning MAHF’s component structure, we will provide examples of its usage and extension to ensure that it is reusable by others as well

    Clustering analysis using Swarm Intelligence

    Get PDF
    This thesis is concerned with the application of the swarm intelligence methods in clustering analysis of datasets. The main objectives of the thesis are ∙ Take the advantage of a novel evolutionary algorithm, called artificial bee colony, to improve the capability of K-means in finding global optimum clusters in nonlinear partitional clustering problems. ∙ Consider partitional clustering as an optimization problem and an improved antbased algorithm, named Opposition-Based API (after the name of Pachycondyla APIcalis ants), to automatic grouping of large unlabeled datasets. ∙ Define partitional clustering as a multiobjective optimization problem. The aim is to obtain well-separated, connected, and compact clusters and for this purpose, two objective functions have been defined based on the concepts of data connectivity and cohesion. These functions are the core of an efficient multiobjective particle swarm optimization algorithm, which has been devised for and applied to automatic grouping of large unlabeled datasets. For that purpose, this thesis is divided is five main parts: ∙ The first part, including Chapter 1, aims at introducing state of the art of swarm intelligence based clustering methods. ∙ The second part, including Chapter 2, consists in clustering analysis with combination of artificial bee colony algorithm and K-means technique. ∙ The third part, including Chapter 3, consists in a presentation of clustering analysis using opposition-based API algorithm. ∙ The fourth part, including Chapter 4, consists in multiobjective clustering analysis using particle swarm optimization. ∙ Finally, the fifth part, including Chapter 5, concludes the thesis and addresses the future directions and the open issues of this research

    Clustering analysis using Swarm Intelligence

    Get PDF
    This thesis is concerned with the application of the swarm intelligence methods in clustering analysis of datasets. The main objectives of the thesis are ∙ Take the advantage of a novel evolutionary algorithm, called artificial bee colony, to improve the capability of K-means in finding global optimum clusters in nonlinear partitional clustering problems. ∙ Consider partitional clustering as an optimization problem and an improved antbased algorithm, named Opposition-Based API (after the name of Pachycondyla APIcalis ants), to automatic grouping of large unlabeled datasets. ∙ Define partitional clustering as a multiobjective optimization problem. The aim is to obtain well-separated, connected, and compact clusters and for this purpose, two objective functions have been defined based on the concepts of data connectivity and cohesion. These functions are the core of an efficient multiobjective particle swarm optimization algorithm, which has been devised for and applied to automatic grouping of large unlabeled datasets. For that purpose, this thesis is divided is five main parts: ∙ The first part, including Chapter 1, aims at introducing state of the art of swarm intelligence based clustering methods. ∙ The second part, including Chapter 2, consists in clustering analysis with combination of artificial bee colony algorithm and K-means technique. ∙ The third part, including Chapter 3, consists in a presentation of clustering analysis using opposition-based API algorithm. ∙ The fourth part, including Chapter 4, consists in multiobjective clustering analysis using particle swarm optimization. ∙ Finally, the fifth part, including Chapter 5, concludes the thesis and addresses the future directions and the open issues of this research

    Design of an E-learning system using semantic information and cloud computing technologies

    Get PDF
    Humanity is currently suffering from many difficult problems that threaten the life and survival of the human race. It is very easy for all mankind to be affected, directly or indirectly, by these problems. Education is a key solution for most of them. In our thesis we tried to make use of current technologies to enhance and ease the learning process. We have designed an e-learning system based on semantic information and cloud computing, in addition to many other technologies that contribute to improving the educational process and raising the level of students. The design was built after much research on useful technology, its types, and examples of actual systems that were previously discussed by other researchers. In addition to the proposed design, an algorithm was implemented to identify topics found in large textual educational resources. It was tested and proved to be efficient against other methods. The algorithm has the ability of extracting the main topics from textual learning resources, linking related resources and generating interactive dynamic knowledge graphs. This algorithm accurately and efficiently accomplishes those tasks even for bigger books. We used Wikipedia Miner, TextRank, and Gensim within our algorithm. Our algorithm‘s accuracy was evaluated against Gensim, largely improving its accuracy. Augmenting the system design with the implemented algorithm will produce many useful services for improving the learning process such as: identifying main topics of big textual learning resources automatically and connecting them to other well defined concepts from Wikipedia, enriching current learning resources with semantic information from external sources, providing student with browsable dynamic interactive knowledge graphs, and making use of learning groups to encourage students to share their learning experiences and feedback with other learners.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Luis Sánchez Fernández.- Secretario: Luis de la Fuente Valentín.- Vocal: Norberto Fernández Garcí

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality
    • 

    corecore