5,026 research outputs found

    Development of an image converter of radical design

    Get PDF
    A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product

    Clock gate on abort: Towards energy-efficient hardware transactional memory

    Get PDF
    Transactional Memory (TM) is an emerging technology which promises to make parallel programming easier compared to earlier lock based approaches. However, as with any form of speculation, Transactional Memory too wastes a considerable amount of energy when the speculation goes wrong and transaction aborts. For Transactional Memory this wastage will typically be quite high because programmer will often mark a large portion of the code to be executed transactionally. We are proposing to turn-off a processor dynamically by gating all its clocks, whenever any transaction running in it is aborted. We have described a novel protocol which can be used in the Scalable-TCC like Hardware Transactional Memory systems. Also in the protocol we are proposing a gating-aware contention management policy to set the duration of the clock gating period precisely so that both performance and energy can be improved. With our proposal we got an average 19% savings in the total consumed energy and even an average speed-up of 4%.Peer ReviewedPostprint (published version

    A spacecraft digital stabilization and control system study

    Get PDF
    Digital techniques to increase reliability and accuracy of spacecraft control and stabilization system

    Power Modeling and Optimization for GPGPUs

    Get PDF
    Modern graphics processing units (GPUs) supports tens of thousands of parallel threads and delivers remarkably high computing throughput. General-Purpose computing on GPUs (GPGPUs) is becoming the attractive platform for general-purpose applications that request high computational performance such as scientific computing, financial applications, medical data processing, and so on. However, GPGPUs is facing severe power challenge due to the increasing number of cores placed on a single chip with decreasing feature size. In order to explore the power optimization techniques in GPGPUs, I first build a power model for GPGPUs, which is able to estimate both dynamic and leakage power of major microarchitecture structures in GPGPUs. I then target on the power-hungry structures (e.g. register file) to explore the energy-efficient GPGPUs. In order to hide the long latency operations, GPGPUs employs the fine-grained multi-threading among numerous active threads, leading to the sizeable register files with massive power consumption. The conventional method to reduce dynamic power consumption is the supply voltage scaling. And the inter-bank tunneling FETs (TFETs) is the promising candidate compared to CMOS for low voltage operations regarding to both leakage and performance. However, always executing at the low voltage will result in significant performance degradation. In this study, I propose the hybrid CMOS-TFET based register file and allocate TFET-based registers to threads whose execution progress can be delayed to some degree to avoid the memory contentions with other threads to reduce both dynamic and leakage power, and the CMOS-based registers are still used for threads requiring normal execution speed. My experimental results show that the proposed technique achieves 30% energy (including both dynamic and leakage) reduction in register files with negligible performance degradation compared to the baseline case equipped with naive power optimization technique

    Power-Aware Design Methodologies for FPGA-Based Implementation of Video Processing Systems

    Get PDF
    The increasing capacity and capabilities of FPGA devices in recent years provide an attractive option for performance-hungry applications in the image and video processing domain. FPGA devices are often used as implementation platforms for image and video processing algorithms for real-time applications due to their programmable structure that can exploit inherent spatial and temporal parallelism. While performance and area remain as two main design criteria, power consumption has become an important design goal especially for mobile devices. Reduction in power consumption can be achieved by reducing the supply voltage, capacitances, clock frequency and switching activities in a circuit. Switching activities can be reduced by architectural optimization of the processing cores such as adders, multipliers, multiply and accumulators (MACS), etc. This dissertation research focuses on reducing the switching activities in digital circuits by considering data dependencies in bit level, word level and block level neighborhoods in a video frame. The bit level data neighborhood dependency consideration for power reduction is illustrated in the design of pipelined array, Booth and log-based multipliers. For an array multiplier, operands of the multipliers are partitioned into higher and lower parts so that the probability of the higher order parts being zero or one increases. The gating technique for the pipelined approach deactivates part(s) of the multiplier when the above special values are detected. For the Booth multiplier, the partitioning and gating technique is integrated into the Booth recoding scheme. In addition, a delay correction strategy is developed for the Booth multiplier to reduce the switching activities of the sign extension part in the partial products. A novel architecture design for the computation of log and inverse-log functions for the reduction of power consumption in arithmetic circuits is also presented. This also utilizes the proposed partitioning and gating technique for further dynamic power reduction by reducing the switching activities. The word level and block level data dependencies for reducing the dynamic power consumption are illustrated by presenting the design of a 2-D convolution architecture. Here the similarities of the neighboring pixels in window-based operations of image and video processing algorithms are considered for reduced switching activities. A partitioning and detection mechanism is developed to deactivate the parallel architecture for window-based operations if higher order parts of the pixel values are the same. A neighborhood dependent approach (NDA) is incorporated with different window buffering schemes. Consideration of the symmetry property in filter kernels is also applied with the NDA method for further reduction of switching activities. The proposed design methodologies are implemented and evaluated in a FPGA environment. It is observed that the dynamic power consumption in FPGA-based circuit implementations is significantly reduced in bit level, data level and block level architectures when compared to state-of-the-art design techniques. A specific application for the design of a real-time video processing system incorporating the proposed design methodologies for low power consumption is also presented. An image enhancement application is considered and the proposed partitioning and gating, and NDA methods are utilized in the design of the enhancement system. Experimental results show that the proposed multi-level power aware methodology achieves considerable power reduction. Research work is progressing In utilizing the data dependencies in subsequent frames in a video stream for the reduction of circuit switching activities and thereby the dynamic power consumption

    Efeitos da falha lógica e fuga (dissipação de energia de área) em sistemas criptográficos usando a técnica de clock gating para aprimorar o protocolo na web

    Get PDF
    The last century has seen an evolution in technology that has improved communication systems and, in general, made life easier for people. Our communication systems have become faster and more dependable as a result of the explosion of gadgets and services. But, these upgrades come at a price. The power consumption is one of the most worrying costs. In recent years, the solution involved installing larger, more powerful batteries—so long as doing so did not limit mobility. Today's economic and environmental problems compel us to consider alternative solutions, like methods for lowering the power consumption of digital devices. This study focuses on using digital circuits, which promise to deliver good energy efficiency and desirable performance at very low voltage savings. Certain digital switches are allegedly redundant and not required for the circuit to function properly, yet they continue to use energy. So, one of the primary issues for low power design is reducing such redundant switches. Subthreshold conduction in digital circuits is typically seen as a “parasitic” leakage in a condition where there should ideally be no conduction. Sub-threshold activities thereby reduce the problem of lowering power consumption, but do so at the expense of system throughput deterioration, fluctuations in system stability and functionality, temperature variations, and most critically, design space utilization. In order to minimize some of these redundant switches and to make circuits more energy-efficient while maintaining functionality, this study suggests two novel techniques. It uses an optimization method based on threshold voltage change to reduce glitch power. A glitch-free circuit netlist is created using an algorithm, while still maintaining the requisite delay performance. Using this approach results in a 6.14% overall reduction in energy consumption.El siglo pasado fue testigo de una evolución de la tecnología que mejoró los sistemas de comunicación y, en general, facilitó la vida de las personas. Nuestros sistemas de comunicación se han vuelto más rápidos y confiables como resultado de la explosión de dispositivos y servicios. Pero, estas actualizaciones tienen un precio. El consumo de energía es uno de los costes más preocupantes. En los últimos años, la solución ha pasado por instalar baterías más grandes y potentes, siempre que esto no limite la movilidad. Los problemas económicos y ambientales actuales nos obligan a considerar soluciones alternativas, como métodos para reducir el consumo de energía de los dispositivos digitales. Este estudio se centra en el uso de circuitos digitales, que prometen ofrecer una buena eficiencia energética y un rendimiento deseable con un ahorro de tensión muy bajo. Se supone que ciertos interruptores digitales son redundantes y no necesarios para que el circuito funcione correctamente, pero continúan consumiendo energía. Por lo tanto, uno de los principales problemas para el diseño de bajo consumo es reducir estos conmutadores redundantes. La conducción por debajo del umbral en los circuitos digitales normalmente se considera una fuga “parásita” en una condición en la que, idealmente, no debería haber conducción. Por lo tanto, las actividades por debajo del umbral reducen el problema de disminuir el consumo de energía, pero lo hacen a expensas del deterioro del rendimiento del sistema, las fluctuaciones en la estabilidad y funcionalidad del sistema, las variaciones de temperatura y, lo que es más importante, la utilización del espacio de diseño. Para minimizar algunos de estos interruptores redundantes y hacer que los circuitos sean más eficientes desde el punto de vista energético manteniendo la funcionalidad, este estudio sugiere dos nuevas técnicas. Utiliza un método de optimización basado en cambiar el voltaje de umbral para reducir la energía de falla. Se crea una lista de conexiones de circuito impecable utilizando un algoritmo mientras se mantiene el rendimiento de retardo requerido. El uso de este enfoque da como resultado una reducción general del 6,14 % en el consumo de energía.O último século assistiu a uma evolução da tecnologia que melhorou os sistemas de comunicação e, em geral, facilitou a vida das pessoas. Nossos sistemas de comunicação tornaram-se mais rápidos e confiáveis como resultado da explosão de aparelhos e serviços. Mas, essas atualizações têm um preço. O consumo de energia é um dos custos mais preocupantes. Nos últimos anos, a solução envolveu a instalação de baterias maiores e mais potentes, desde que isso não limitasse a mobilidade. Os problemas econômicos e ambientais de hoje nos obrigam a considerar soluções alternativas, como métodos para reduzir o consumo de energia de dispositivos digitais. Este estudo se concentra no uso de circuitos digitais, que prometem oferecer boa eficiência energética e desempenho desejável com economia de tensão muito baixa. Certos interruptores digitais são supostamente redundantes e não são necessários para o funcionamento adequado do circuito, mas continuam a consumir energia. Portanto, um dos principais problemas para o projeto de baixo consumo de energia é reduzir esses switches redundantes. A condução abaixo do limiar em circuitos digitais é normalmente vista como uma fuga “parasita” em uma condição em que idealmente não deveria haver condução. As atividades abaixo do limite reduzem, assim, o problema de diminuir o consumo de energia, mas o fazem às custas da deterioração da taxa de transferência do sistema, flutuações na estabilidade e funcionalidade do sistema, variações de temperatura e, mais criticamente, utilização do espaço de projeto. A fim de minimizar alguns desses switches redundantes e tornar os circuitos mais eficientes em termos de energia, mantendo a funcionalidade, este estudo sugere duas novas técnicas. Ele usa um método de otimização baseado na mudança de tensão limite para reduzir a energia de falha. Uma netlist de circuito sem falhas é criada usando um algoritmo, mantendo o desempenho de atraso necessário. O uso dessa abordagem resulta em uma redução geral de 6,14% no consumo de energia

    Conceptual mechanization studies for a horizon definition spacecraft communications and data handling subsystem

    Get PDF
    Conceptual mechanization for horizon definition spacecraft communications and data handling subsyste

    근사 컴퓨팅을 이용한 회로 노화 보상과 에너지 효율적인 신경망 구현

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2020. 8. 이혁재.Approximate computing reduces the cost (energy and/or latency) of computations by relaxing the correctness (i.e., precision) of computations up to the level, which is dependent on types of applications. Moreover, it can be realized in various hierarchies of computing system design from circuit level to application level. This dissertation presents the methodologies applying approximate computing across such hierarchies; compensating aging-induced delay in logic circuit by dynamic computation approximation (Chapter 1), designing energy-efficient neural network by combining low-power and low-latency approximate neuron models (Chapter 2), and co-designing in-memory gradient descent module with neural processing unit so as to address a memory bottleneck incurred by memory I/O for high-precision data (Chapter 3). The first chapter of this dissertation presents a novel design methodology to turn the timing violation caused by aging into computation approximation error without the reliability guardband or increasing the supply voltage. It can be realized by accurately monitoring the critical path delay at run-time. The proposal is evaluated at two levels: RTL component level and system level. The experimental results at the RTL component level show a significant improvement in terms of (normalized) mean squared error caused by the timing violation and, at the system level, show that the proposed approach successfully transforms the aging-induced timing violation errors into much less harmful computation approximation errors, therefore it recovers image quality up to perceptually acceptable levels. It reduces the dynamic and static power consumption by 21.45% and 10.78%, respectively, with 0.8% area overhead compared to the conventional approach. The second chapter of this dissertation presents an energy-efficient neural network consisting of alternative neuron models; Stochastic-Computing (SC) and Spiking (SP) neuron models. SC has been adopted in various fields to improve the power efficiency of systems by performing arithmetic computations stochastically, which approximates binary computation in conventional computing systems. Moreover, a recent work showed that deep neural network (DNN) can be implemented in the manner of stochastic computing and it greatly reduces power consumption. However, Stochastic DNN (SC-DNN) suffers from problem of high latency as it processes only a bit per cycle. To address such problem, it is proposed to adopt Spiking DNN (SP-DNN) as an input interface for SC-DNN since SP effectively processes more bits per cycle than SC-DNN. Moreover, this chapter resolves the encoding mismatch problem, between two different neuron models, without hardware cost by compensating the encoding mismatch with synapse weight calibration. A resultant hybrid DNN (SPSC-DNN) consists of SP-DNN as bottom layers and SC-DNN as top layers. Exploiting the reduced latency from SP-DNN and low-power consumption from SC-DNN, the proposed SPSC-DNN achieves improved energy-efficiency with lower error-rate compared to SC-DNN and SP-DNN in same network configuration. The third chapter of this dissertation proposes GradPim architecture, which accelerates the parameter updates by in-memory processing which is codesigned with 8-bit floating-point training in Neural Processing Unit (NPU) for deep neural networks. By keeping the high precision processing algorithms in memory, such as the parameter update incorporating high-precision weights in its computation, the GradPim architecture can achieve high computational efficiency using 8-bit floating point in NPU and also gain power efficiency by eliminating massive high-precision data transfers between NPU and off-chip memory. A simple extension of DDR4 SDRAM utilizing bank-group parallelism makes the operation designs in processing-in-memory (PIM) module efficient in terms of hardware cost and performance. The experimental results show that the proposed architecture can improve the performance of the parameter update phase in the training by up to 40% and greatly reduce the memory bandwidth requirement while posing only a minimal amount of overhead to the protocol and the DRAM area.근사 컴퓨팅은 연산의 정확도의 손실을 어플리케이션 별 적절한 수준까지 허용함으로써 연산에 필요한 비용 (에너지나 지연시간)을 줄인다. 게다가, 근사 컴퓨팅은 컴퓨팅 시스템 설계의 회로 계층부터 어플리케이션 계층까지 다양한 계층에 적용될 수 있다. 본 논문에서는 근사 컴퓨팅 방법론을 다양한 시스템 설계의 계층에 적용하여 전력과 에너지 측면에서 이득을 얻을 수 있는 방법들을 제안하였다. 이는, 연산 근사화 (computation Approximation)를 통해 회로의 노화로 인해 증가된 지연시간을 추가적인 전력소모 없이 보상하는 방법과 (챕터 1), 근사 뉴런모델 (approximate neuron model)을 이용해 에너지 효율이 높은 신경망을 구성하는 방법 (챕터 2), 그리고 메모리 대역폭으로 인한 병목현상 문제를 높은 정확도 데이터를 활용한 연산을 메모리 내에서 수행함으로써 완화시키는 방법을 (챕터3) 제안하였다. 첫 번째 챕터는 회로의 노화로 인한 지연시간위반을 (timing violation) 설계마진이나 (reliability guardband) 공급전력의 증가 없이 연산오차 (computation approximation error)를 통해 보상하는 설계방법론 (design methodology)를 제안하였다. 이를 위해 주요경로의 (critical path) 지연시간을 동작시간에 정확하게 측정할 필요가 있다. 여기서 제안하는 방법론은 RTL component와 system 단계에서 평가되었다. RTL component 단계의 실험결과를 통해 제안한 방식이 표준화된 평균제곱오차를 (normalized mean squared error) 상당히 줄였음을 볼 수 있다. 그리고 system 단계에서는 이미지처리 시스템에서 이미지의 품질이 인지적으로 충분히 회복되는 것을 보임으로써 회로노화로 인해 발생한 지연시간위반 오차가 에러의 크기가 작은 연산오차로 변경되는 것을 확인 할 수 있었다. 결론적으로, 제안된 방법론을 따랐을 때 0.8%의 공간을 (area) 더 사용하는 비용을 지불하고 21.45%의 동적전력소모와 (dynamic power consumption) 10.78%의 정적전력소모의 (static power consumption) 감소를 달성할 수 있었다. 두 번째 챕터는 근사 뉴런모델을 활용하는 고-에너지효율의 신경망을 (neural network) 제안하였다. 본 논문에서 사용한 두 가지의 근사 뉴런모델은 확률컴퓨팅과 (stochastic computing) 스파이킹뉴런 (spiking neuron) 이론들을 기반으로 모델링되었다. 확률컴퓨팅은 산술연산들을 확률적으로 수행함으로써 이진연산을 낮은 전력소모로 수행한다. 최근에 확률컴퓨팅 뉴런모델을 이용하여 심층 신경망 (deep neural network)를 구현할 수 있다는 연구가 진행되었다. 그러나, 확률컴퓨팅을 뉴런모델링에 활용할 경우 심층신경망이 매 클락사이클마다 (clock cycle) 하나의 비트만을 (bit) 처리하므로, 지연시간 측면에서 매우 나쁠 수 밖에 없는 문제가 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위하여 스파이킹 뉴런모델로 구성된 스파이킹 심층신경망을 확률컴퓨팅을 활용한 심층신경망 구조와 결합하였다. 스파이킹 뉴런모델의 경우 매 클락사이클마다 여러 비트를 처리할 수 있으므로 심층신경망의 입력 인터페이스로 사용될 경우 지연시간을 줄일 수 있다. 하지만, 확률컴퓨팅 뉴런모델과 스파이킹 뉴런모델의 경우 부호화 (encoding) 방식이 다른 문제가 있다. 따라서 본 논문에서는 해당 부호화 불일치 문제를 모델의 파라미터를 학습할 때 고려함으로써, 파라미터들의 값이 부호화 불일치를 고려하여 조절 (calibration) 될 수 있도록 하여 문제를 해결하였다. 이러한 분석의 결과로, 앞 쪽에는 스파이킹 심층신경망을 배치하고 뒷 쪽애는 확률컴퓨팅 심층신경망을 배치하는 혼성신경망을 제안하였다. 혼성신경망은 스파이킹 심층신경망을 통해 매 클락사이클마다 처리되는 비트 양의 증가로 인한 지연시간 감소 효과와 확률컴퓨팅 심층신경망의 저전력 소모 특성을 모두 활용함으로써 각 심층신경망을 따로 사용하는 경우 대비 우수한 에너지 효율성을 비슷하거나 더 나은 정확도 결과를 내면서 달성한다. 세 번째 챕터는 심층신경망을 8비트 부동소숫점 연산으로 학습하는 신경망처리유닛의 (neural processing unit) 파라미터 갱신을 (parameter update) 메모리-내-연산으로 (in-memory processing) 가속하는 GradPIM 아키텍쳐를 제안하였다. GradPIM은 8비트의 낮은 정확도 연산은 신경망처리유닛에 남기고, 높은 정확도를 가지는 데이터를 활용하는 연산은 (파라미터 갱신) 메모리 내부에 둠으로써 신경망처리유닛과 메모리간의 데이터통신의 양을 줄여, 높은 연산효율과 전력효율을 달성하였다. 또한, GradPIM은 bank-group 수준의 병렬화를 이루어 내 높은 내부 대역폭을 활용함으로써 메모리 대역폭을 크게 확장시킬 수 있게 되었다. 또한 이러한 메모리 구조의 변경이 최소화되었기 때문에 추가적인 하드웨어 비용도 최소화되었다. 실험 결과를 통해 GradPIM이 최소한의 DRAM 프로토콜 변화와 DRAM칩 내의 공간사용을 통해 심층신경망 학습과정 중 파라미터 갱신에 필요한 시간을 40%만큼 향상시켰음을 보였다.Chapter I: Dynamic Computation Approximation for Aging Compensation 1 1.1 Introduction 1 1.1.1 Chip Reliability 1 1.1.2 Reliability Guardband 2 1.1.3 Approximate Computing in Logic Circuits 2 1.1.4 Computation approximation for Aging Compensation 3 1.1.5 Motivational Case Study 4 1.2 Previous Work 5 1.2.1 Aging-induced Delay 5 1.2.2 Delay-Configurable Circuits 6 1.3 Proposed System 8 1.3.1 Overview of the Proposed System 8 1.3.2 Proposed Adder 9 1.3.3 Proposed Multiplier 11 1.3.4 Proposed Monitoring Circuit 16 1.3.5 Aging Compensation Scheme 19 1.4 Design Methodology 20 1.5 Evaluation 24 1.5.1 Experimental setup 24 1.5.2 RTL component level Adder/Multiplier 27 1.5.3 RTL component level Monitoring circuit 30 1.5.4 System level 31 1.6 Summary 38 Chapter II: Energy-Efficient Neural Network by Combining Approximate Neuron Models 40 2.1 Introduction 40 2.1.1 Deep Neural Network (DNN) 40 2.1.2 Low-power designs for DNN 41 2.1.3 Stochastic-Computing Deep Neural Network 41 2.1.4 Spiking Deep Neural Network 43 2.2 Hybrid of Stochastic and Spiking DNNs 44 2.2.1 Stochastic-Computing vs Spiking Deep Neural Network 44 2.2.2 Combining Spiking Layers and Stochastic Layers 46 2.2.3 Encoding Mismatch 47 2.3 Evaluation 49 2.3.1 Latency and Test Error 49 2.3.2 Energy Efficiency 51 2.4 Summary 54 Chapter III: GradPIM: In-memory Gradient Descent in Mixed-Precision DNN Training 55 3.1 Introduction 55 3.1.1 Neural Processing Unit 55 3.1.2 Mixed-precision Training 56 3.1.3 Mixed-precision Training with In-memory Gradient Descent 57 3.1.4 DNN Parameter Update Algorithms 59 3.1.5 Modern DRAM Architecture 61 3.1.6 Motivation 63 3.2 Previous Work 65 3.2.1 Processing-In-Memory 65 3.2.2 Co-design Neural Processing Unit and Processing-In-Memory 66 3.2.3 Low-precision Computation in NPU 67 3.3 GradPIM 68 3.3.1 GradPIM Architecture 68 3.3.2 GradPIM Operations 69 3.3.3 Timing Considerations 70 3.3.4 Update Phase Procedure 73 3.3.5 Commanding GradPIM 75 3.4 NPU Co-design with GradPIM 76 3.4.1 NPU Architecture 76 3.4.2 Data Placement 79 3.5 Evaluation 82 3.5.1 Evaluation Methodology 82 3.5.2 Experimental Results 83 3.5.3 Sensitivity Analysis 88 3.5.4 Layer Characterizations 90 3.5.5 Distributed Data Parallelism 90 3.6 Summary 92 3.6.1 Discussion 92 Bibliography 113 요약 114Docto

    Reclaiming Fault Resilience and Energy Efficiency With Enhanced Performance in Low Power Architectures

    Get PDF
    Rapid developments of the AI domain has revolutionized the computing industry by the introduction of state-of-art AI architectures. This growth is also accompanied by a massive increase in the power consumption. Near-Theshold Computing (NTC) has emerged as a viable solution by offering significant savings in power consumption paving the way for an energy efficient design paradigm. However, these benefits are accompanied by a deterioration in performance due to the severe process variation and slower transistor switching at Near-Threshold operation. These problems severely restrict the usage of Near-Threshold operation in commercial applications. In this work, a novel AI architecture, Tensor Processing Unit, operating at NTC is thoroughly investigated to tackle the issues hindering system performance. Research problems are demonstrated in a scientific manner and unique opportunities are explored to propose novel design methodologies

    A study on coarse-grained placement and routing for low-power FPGA architecture

    Get PDF
    制度:新 ; 報告番号:甲3603号 ; 学位の種類:博士(工学) ; 授与年月日:2012/3/15 ; 早大学位記番号:新595
    corecore